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Résumé

Le développement d’algorithmes efficaces pour apprendre des représentations ap-
propriées de données structurées, telles que des séquences d’événements datés pro-
venant de la vie réelle, est un défi majeur et central de l’apprentissage automatique.
Dans cette optique, l’apprentissage profond est devenu populaire pour modéliser
des données structurées, parfois combiné avec des techniques de pré-entraînement.
En même temps, d’autres méthodes d’apprentissage statistique plus “classiques”,
comme les forêts aléatoires ou la régression, occupent toujours une place importante
dans la pratique à cause de leur efficacité.

Dans cette thèse, nous apportons quelques contributions à l’étude théorique et
numérique de certains problèmes de l’apprentissage statistique, ainsi que l’applica-
tion de l’apprentissage profond aux données de la santé publique.

La première contribution consiste à introduire un nouveau modèle appelé ZiMM
(Zero-inflated Mixture of Multinomial distributions), et une architecture Encodeur-
Décodeur (ED) de réseaux de neurones profonds entraînés de-bout-en-bout, modé-
lisant les parcours de soins pour la prédiction des complications post-chirurgicales.
ZiMM-ED est appliqué aux données de santé de remboursement de soins provenant
du Système National des Données de Santé (SNDS) en France, qui est une base
de données non-clinique, contenant seulement les codes de remboursement datés
d’achats de médicaments et des diagnostics hospitaliers. En particulier, nous consi-
dérons les complications jusqu’au 18e mois après la chirurgie, ce qui correspond à des
observations “floues” car seulement observées à partir des achats de médicaments
d’une famille spécifique. Nos expériences montrent les améliorations en termes de
performance prédictive de ZiMM-ED par rapport à plusieurs modèles de référence.
ZiMM-ED ouvre la voie de l’exploitation d’un tel jeu de données avec peu de pré-
traitement à grâce aux réseaux de neurones profonds. Cette base de données est
jusque-là utilisée principalement pour des raisons administratives (remboursement
des soins de santé), et nous montrons le pouvoir prédictif des réseaux de neurones
profonds dessus sur une telle base de données avec un cas précis.

La deuxième contribution porte sur l’étude théorique de l’apprentissage contras-
tif de représentation, une technique récemment devenue populaire et expérimenta-
lement efficace pour l’entraînement auto-supervisé. En se basant sur quelques ré-
sultats proposant des cadres d’étude théoriques, nous étendons la garantie pour la
qualité des représentations apprises dans la phase pré-entrainement non-supervisé
avec une perte contrastive et de multiples échantillons négatifs, la qualité étant
mesurée en termes de performance prédictive pour les tâches supervisées en aval.
En outre, nous fournissons une garantie de convergence quant à la minimisation de
la perte contrastive avec la descente de gradient pour un encodeur de réseaux de
neurones sur-paramétré. Ces résultats théoriques, combinant des expériences nu-
mériques, ouvrent des portes pour une meilleure compréhension des pratiques de



pré-entrainement - affinement très utilisées aujourd’hui en apprentissage profond.
La troisième contribution consiste à introduire un nouvel algorithme de type

forêt aléatoire, que nous nommons WildWood. Alors que l’algorithme standard de
forêt aléatoire utilise des échantillons bootstrap out-of-bag seulement pour calculer
des scores, WildWood utilise ces échantillons pour améliorer les prédictions en cal-
culant l’agrégation de tous les sous-arbres possibles de chaque arbre dans la forêt :
ce calcul est exact et efficace grâce à l’algorithme de context tree weighting. Nous
montrons que théoriquement, la perte induite par une telle agrégation est compa-
rable à celle du meilleur sous-arbre possible. Nous proposons une implémentation
Python open-source de WildWood avec une stratégie d’histogramme qui permet
d’accélérer la recherche des coupures impliquées dans la construction des arbres.
Notre implémentation est rapide et compétitive en comparaison avec d’autres al-
gorithmes ensemblistes bien connus, par exemple la forêt aléatoire standard et les
algorithmes d’extrême gradient boosting.

Enfin, le dernier chapitre de cette thèse est consacré à la régression logistique en
ligne et considère le regret par rapport à la boule `2 de rayon B. Alors qu’il est connu
que les algorithmes propres avec regret logarithmique en le nombre d’itérations n
subissent nécessairement un facteur exponentiel en B dans leur borne de regret,
quelques algorithmes impropres, bayésiens et non-bayésiens, ont été introduits ré-
cemment avec des meilleures garanties. Dans le but d’obtenir une garantie de regret
optimale, nous proposons deux algorithmes impropres et non-bayésiens, OSMP et
AOSMP, reposant sur une stratégie “minmax à une étape”, avec la fonction de perte
exacte pour OSMP, et une fonction de perte approchée pour AOSMP. Nos analyses
de regret s’appuient entre autres sur la propriété de self-concordance généralisée de
la fonction logistique. Pour OSMP, malgré une borne supérieure obtenue pour les
regrets instantanés, nous expliquons en quoi l’amélioration des bornes de regret est
une question difficile, à laquelle AOSMP apporte une réponse comparable à l’état
de l’art de la garantie de regret.

Mots clefs : Apprentissage statistique, Apprentissage profond, Données de santé,
Apprentissage contrastif, Forêts aléatoires, Régression logistique en ligne
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Abstract

Developing efficient algorithms to learn appropriate representations of structured
data, including sequences of timestamped events, is a major and central challenge in
machine learning. To this end, deep learning has become popular in modeling struc-
tured data, sometimes combined with some pre-training techniques. At the same
time, classical machine learning methods, such as random forest and regression,
always have an important place because of their efficiency.

In this thesis, we make some contributions to the theoretical and numerical stud-
ies of some machine learning problems, as well as the application of deep learning
on the public health data.

The first contribution introduces a new model ZiMM (Zero-inflated Mixture of
Multinomial distributions), and an Encoder-Decoder (ED) end-to-end deep neural
networks architecture, modelling the healthcare pathways for post-surgical com-
plications prediction. ZiMM-ED is applied on the healthcare claims data coming
from the French national system of health data (SNDS), which is a non-clinical
database, only containing timestamped reimbursement codes for drugs purchases,
medical procedures and hospital diagnoses. In particular, we consider the compli-
cation until the 18-th month after the surgery, which is also blurry since we only
observe this from the purchase of drugs from a specific family. Our experiments
show that ZiMM-ED improves several baselines in terms of prediction performance.
At the same time, ZiMM-ED paves the way for leveraging such a dataset with
little pre-processing, using deep neural networks. Hence, we take advantage of a
database which is until now only used for administrative ends (healthcare expense
reimbursement), and we show the predictive power of the deep neural networks on
it with a precise application.

The second contribution focuses on the theoretical study of contrastive rep-
resentation learning, a technique recently becoming popular and experimentally
shown to be efficient for self-supervised learning. Relying on some previous works
introducing the theoretical framework, we extend the guarantees for the quality
of the representations learned during the pre-training phase, with the contrastive
loss and multiple negative samples, the quality being measured by the predictive
performance of some down-stream supervised tasks. Furthermore, we provide a
convergence guarantee for the minimization of the contrastive training error with
gradient descent of an over-parametrized neural network encoder. These theoret-
ical results, combined with some illustrative experiments, open doors for a better
understanding of the typical pre-training – fine-tuning practices.

Next, the third contribution consists of introducing a new algorithm of type
random forest, that we name WildWood. While the standard random forest algo-
rithm uses bootstrap out-of-bag samples to compute out-of-bag score, WildWood
uses these samples to produce improved predictions given by an aggregation of all



the possible sub-trees for each fully-grown tree in the forest: this computation is
precise and efficient thanks to the context tree weighting algorithm. We show that
theoretically, the loss of such an aggregation is comparable to the loss of the best
possible subtree. We propose an open-source Python implementation of WildWood
with the histogram strategy which accelerates split finding. Our implementation is
fast and competitive compared to other well-established ensemble methods, such as
standard random forest and extreme gradient boosting algorithms.

Finally, the last chapter of this thesis is devoted to the problem of online lo-
gistic regression and considers the regret with respect to the `2-ball of radius B.
While it is known that proper algorithms with a regret logarithmic in the number
of rounds n necessarily suffer from an exponential factor in B, some improper al-
gorithms, Bayesian and non-Bayesian, were recently introduced with better regret
guarantees. For the purpose of obtaining an optimal regret guarantee, we introduce
two improper non-Bayesian algorithms, OSMP and AOSMP, based on the one-step
minmax strategy, with the exact loss function for OSMP, and an approximated loss
function for AOSMP. Our regret analysis relies, among others, on the generalized
self-concordance property of the logistic function. For OSMP, although we find
an upper-bound for the instant regrets, we explain why obtaining improved regret
upper-bounds is a difficult question, to which AOSMP brings an answer similar to
the state-of-the-art one.

Keywords: Machine learning, Deep learning, Medical claims data, Contrastive
learning, Random forests, Online logistic regression
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Résumé détaillé en français

Cette thèse traite du sujet général de l’apprentissage automatique (Machine lear-
ning), un cadre général pour le problème de l’extraction d’informations et de la prise
de décisions à partir de données. Alors que la dernière décennie a vu le renouveau
des réseaux de neurones, rebaptisés apprentissage profond (Deep learning), et ses
nombreuses applications réussies dans le monde réel grâce à des jeux de données
plus importants et à des capacités de calcul plus fortes, la recherche méthodologique
en apprentissage automatique est plus que jamais cruciale pour le progrès d’un tel
domaine, permettant la conception de nouveaux algorithmes avec des propriétés
souhaitables ainsi que la compréhension plus profonde de certains succès pratiques.

Dans cette thèse, j’ai travaillé sur les applications de l’apprentissage profond sur
des données de santé publique, ainsi que sur des études théoriques et numériques de
certains problèmes d’apprentissage automatique. La première contribution consiste
à exploiter les données de santé de remboursement de soins, disponibles dans le
Système National des Données de Santé (SNDS), en utilisant l’apprentissage pro-
fond (Chapitre 2). Ensuite, les contributions se concentrent sur les thèmes de l’ap-
prentissage contrastif (Chapitre 3), les méthodes basées sur les arbres d’ensemble
(Chapitre 4), et la régression logistique en ligne (Chapitre 5).

Ce résumé en français presénte dans l’ordre chaque contribution de façon suc-
cincte.

Chapitre 2 : ZiMM, un modèle d’apprentissage profond pour les compli-
cations à long terme et floues avec des données de santé de rembourse-
ment de soins non-cliniques

Le travail présenté dans le Chapitre 2 est une tentative de relever certains défis
dans l’application de l’apprentissage profond aux données de santé (EHRs ou celles
de remboursement), sous forme d’une étude d’un cas médical concret.

Nous considérons les problèmes de modélisation et de prédiction d’une compli-
cation à long terme et “floue” qui se produit après une procédure médicale telle
qu’une chirurgie. Il ne s’agit pas ici d’une complication à court terme liée à la
procédure elle-même, mais d’une complication à long terme que les cliniciens ne
peuvent pas expliquer facilement, car elle dépend de séquences inconnues d’événe-
ments passés qui se sont produits avant la procédure. La complication n’est observée
qu’indirectement, de manière “floue”, par le biais de prescriptions longitudinales de
médicaments sur une longue période de temps après la procédure médicale. Notre
motivation pour utiliser le SNDS, une base de données de réclamations médicales
non cliniques, est son exhaustivité au niveau de la population nationale. En ef-
fet, nous considérons un jeu de données extraites contenant les remboursements de
soins médicaux de presque tous les résidents français ayant subi une intervention
chirurgicale pour des problèmes prostatiques, avec un historique entre 1,5 et 5 ans.
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Résumé détaillé

Pour mieux saisir les complications à long terme et floues, nous introduisons
le modèle ZiMM (Zero-inflated Mixture of Multinomial distributions model). Dési-
gnons par ni = ∑B

b=1 yi,b le nombre total de complications floues du patient i, avec
B le nombre de laps de temps post-chirurgical que nous considérons (18 mois en
occurrence). Nous supposons que ni ∈ {0, 1, . . . , B} est distribué (conditionnelle-
ment à xi) comme ni ∼ Categorical(π0(xi), π1(xi), . . . , πB(xi)), où πb(xi) sont tels
que ∑B

b=0 πb(xi) = 1 et πb(xi) > 0 (sortant d’une activation softmax par exemple).
Ces paramètres correspondent à la distribution catégorielle propre au patient i. En-
suite, on suppose que la distribution de yi conditionnelle à ni = b et xi suit soit une
distribution de Dirac sur le vecteur (de taille B) [0, . . . , 0] lorsque b = 0, soit une
distribution multinomiale de paramètres b et pb,1(xi), . . . , pb,B(xi), à savoir

yi|(xi, ni = b) ∼
{
δ[0,...,0] si b = 0,
Multinomial(b, pb,1(xi), . . . , pb,B(xi)) sinon,

où pb,1(xi), . . . , pb,B(xi) sont les paramètres d’une distribution multinomiale lorsque
ni = b, pour chaque b = 1, . . . , B. Une fois encore, ces paramètres sont spécifiques
au patient i.
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Figure 1 – Architecture ZiMM Encoder-Decoder de-bout-en-bout.

En plus de cette modélisation probabiliste des complications post-chirurgicales,
nous construisons une architecture d’apprentissage profond de-bout-en-bout, appe-
lée ZiMM Encodeur-Decodeur (ZiMM ED), capable d’apprendre à partir des mo-
dèles complexes, irréguliers, hétérogènes et épars d’événements de santé observés
dans une base de données de remboursements de soins uniquement. Les compo-
santes de ZiMM ED incluent embedding des codes médicaux, mécanisme d’atten-
tion pour agréger au sein d’une même fenêtre de temps, Long Short Term Memory,
concaténation avec les embeddings issues des features statics, comme l’illustre la
Figure 1.
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Résumé détaillé

Nos expériences montrent que ZiMM ED améliore plusieurs modèles prédictifs
de comparaison, y compris les approches d’apprentissage classiques et d’apprentis-
sage profond, et qu’il permet de travailler sur un tel ensemble de données avec un
minimum de travail de prétraitement.

Chapitre 3 : Garanties théoriques sur l’apprentissage contrastif non su-
pervisé de représentation pour la classification et sur sa convergence

La motivation du travail présenté dans le Chapitre 3 est de mieux comprendre
les techniques d’entraînement non-supervisées et auto-supervisées récemment po-
pulaires, du point de vue de la modélisation.

En suivant le cadre proposé pour la première fois dans Saunshi et al. [2019],
supposons que nous sommes capables d’échantillonner des paires positives (x, x+)
à partir de la distribution

Dsim(x, x+) =
∑
c∈C

ρ(c)Dc(x)Dc(x+), (1)

à savoir, (x, x+) est échantillonné comme un mélange de paires indépendantes condi-
tionnellement à une classe latente partagée, échantillonnée selon ρ. D’autre part,
nous supposons que nous pouvons échantillonner négatif des échantillons x− à partir
de la distribution

Dneg(x−) =
∑
c∈C

ρ(c)Dc(x−). (2)

Sous les hypothèses données dans les équations (1.1) et (1.2), nous considérons la
perte contrastive non supervisée suivante avec N échantillons négatifs,

LNun(f) = E(x,x+)∼Dsim
X−∼D⊗Nneg

− log

 exp
(
f(x)>f(x+)

)
exp (f(x)>f(x+)) +∑

x−∈X− exp (f(x)>f(x−))

 ,
(3)

où D⊗Nneg représente le produit tensoriel N de la distribution Dneg donnée par l’équa-
tion (2).

Proposition (Proposition 3.3). Considérons la perte non supervisée LNun(f) de
l’équation (1.3) avec N échantillons négatifs. Supposons que ρ est uniforme sur
C et que 2 6 k + 1 6 NC. Alors, pour toute fonction encodeur f : X → Rd, nous
avons

Lsup,k(f) 6 Lµsup,k(f) 6 k

1− τ+
N

(
LNun(f)− τ+

N log(N + 1)
)

avec τ+
N = P

[
ci = c,∀i | (c, c1, · · · , cN ) ∼ ρ⊗N+1

]
.

Ces résultats sont valables pour un grand nombre arbitraire de négatifs et sont
découplés du nombre de tâches de classification. Ainsi, nous fournissons de nouvelles
garanties théoriques pour la performance de classification des modèles entraînés de
manière contrastive dans le cas de tâches de classification multivoie, en utilisant
multiple échantillons négatifs. Nous étendons les résultats de Saunshi et al. [2019]
pour montrer que la performance de l’entraînement non supervisé se reflète sur une
tâche de classification ultérieure dans le cas de tâches multiples et lorsqu’un nombre
élevé d’échantillons négatifs est utilisé.

3



Résumé détaillé

Nous fournissons également un résultat de convergence (Théorème 3.5) pour
un algorithme explicite (descente de gradient), lors de l’entraînement d’un réseau
de neurones sur-paramétré pour l’apprentissage non supervisé de représentations
contrastives.

Chapitre 4 : WildWood, un nouvel algorithme de forêt aléatoire

Dans le travail présenté dans le Chapitre 4, nous proposons WildWood, qui conserve
tous les ingrédients de la forêt aléatoire (Random Forest, RF), y compris le boots-
trap, le sous-échantillonnage des features, une procédure similaire de croissance des
arbres, avec un prédicteur d’arbres amélioré et des calculs efficaces implémentés en
Python.

Considérons un arbre T entièrement développé. Rappelons qu’en RF standard,
le prédicteur d’arbre correspondant à T s’écrit f̂(x) = ŷCv(x) pour tout x ∈ X ,
où C(x) est la cellule contenant x associée à la feuille v : il s’agit de trouver la
plus petite cellule contenant x, et de produire la prédiction de cette cellule. Dans
WildWood, nous améliorons ce prédicteur d’arbre par le mécanisme suivant : comme
prédicteur pour T , WildWood utilise

f̂(·) =
∑
T⊂T π(T )e−ηLT ŷT (·)∑

T⊂T π(T )e−ηLT avec π(T ) = 2−‖T‖, (4)

où la somme est calculée sur tous les sous-arbres T de T enracinés à root, η > 0 est
le paramètre de température, ‖T‖ désigne le nombre de noeuds dans T moins son
nombre de feuilles qui sont également des feuilles de T , LT est la perte cumulative
de la prédiction du sous-arbre T sur otb échantillons, i.e. LT := ∑

i∈Iotb
`(ŷT (xi), yi),

et ŷT est la prédiction du sous-arbre T de manière classique. La fonction de pré-
diction (4) peut être vue comme une agrégation des prédictions ŷT (·) de tous les
sous-arbres T , pondérées par leurs performances sur otb échantillons avec un prior
π(T ) = 2−‖T‖. Il s’agit en effet d’une manière non-gloutonne d’élaguer les arbres :
les poids ne dépendent pas seulement de la qualité d’une seule coupure, mais aussi
de la performance de chacune des coupures successives.

En plus, le théorème suivant donne une garantie théorique sur les échantillons
otb, pour l’agrégation de sous-arbres, sous une hypothèse sur l’exp-concavité de
la fonction de perte. Ce théorème stipule que le prédicteur donné par (4) est ca-
pable de performer presque aussi bien que le meilleur sous-arbre oracle T ⊆ T sur
les échantillons otb, avec un taux de O(‖T‖/notb) qui est optimal pour les inéga-
lités oracle de sélection de modèle [Tsybakov, 2003] ; en comparaison, trouver un
oracle argminT∈T

∑
i∈Iotb

`(f̂(xi), yi) est infaisable sur le plan computationnel, ce
qui nécessite d’essayer tous les sous-arbres.

Theorem (Inégalité Oracle, Théorème 4.2 reformulé). Supposons que la fonction
de perte ` soit η-exp-concave. Alors, la fonction de prédiction f̂ donnée par (4)
satisfait l’inégalité oracle

1
notb

∑
i∈Iotb

`(f̂(xi), yi) 6 inf
T⊂T

{ 1
notb

∑
i∈Iotb

`(ŷT (xi), yi) + C‖T‖
η(notb + 1)

}
,

où l’infimum est pris sur tous les sous-arbres T ⊂ T enracinés à root, et C = log 2.

Une conséquence de ce théorème est un calcul efficace de f̂(x), en exploitant le
fait que les arbres dans WildWood sont développés en profondeur. Le calcul de f̂(x)
n’augmente en effet que d’un facteur 2 la complexité de calcul d’un RF standard.
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En plus de ce calcul efficace de l’agrégation de sous-arbres, WildWood supporte
nativement les caractéristiques catégorielles et implémente une stratégie d’histo-
gramme, pour accélérer la recherche de fractionnement. Notre implémentation de
WildWood est disponible sur le répertoire GitHub https://github.com/pyensemble/
wildwood.

Nous avons fait des expériences extensives pour évaluer les performances pré-
dictives et les temps d’exécution de notre implémentation de WildWood, voir les
tableaux 4.1 et 4.2 du Chapitre 4 de ce manuscrit pour les paramètres et les résultats
détaillés des expériences. Toutes les expériences peuvent être reproduites à l’aide de
scripts Python sur le même répertoire. Dans l’ensemble, en tant qu’un algorithme
Random Forest amélioré, WildWood a montré des performances compétitives en
termes de pouvoir prédictif et de temps d’exécution, par rapport aux algorithmes
Random Forest standard et Extreme Gradient Boosting.

Chapitre 5 : Régression logistique en ligne, vers un algorithme efficace
avec une meilleure garantie de regret

Le point de départ du travail présenté dans le Chapitre 5 est la question suivante :
avec éventuellement quelques adaptations, une version en ligne du SMP [Mourtada
and Gaïffas, 2019] pourrait-elle atteindre une garantie de regret comparable à l’excès
de risque du SMP? Nous présentons deux algorithmes candidats, OSMP et AOSMP,
ainsi que leur analyse du regret.

Commençons par considérer le regret λ-ridge pénalisé jusqu’au temps t pour la
régression logistique en ligne, qui s’écrit

t∑
s=1

`(ŷs, ys)− inf
θ∈Θ

(
t∑

s=1
`(θ>xs, ys) + λ ‖θ‖2

)
.

Nous introduisons le One-Step Minmax Predictor (OSMP), qui prend le “meilleur
choix possible” de prédiction ŷt contre “le pire choix possible” de la vraie valeur
yt ∈ {−1,+1} et du paramètre de l’adversaire θ, mesuré par le regret λ-ridge
pénalisé ci-dessus, à savoir

ŷt = argmin
ŷ∈R

sup
yt∈{−1,1}

sup
θ∈Rd

{
`(ŷ, yt) + L̂t−1 −

(
`(θ>xt, yt) + Lλ,t−1(θ)

)}
,

avec L̂t−1 := ∑t−1
s=1 `(ŷs, ys), et Lλ,t−1(θ) := ∑t−1

s=1 `(θ>xs, ys) + λ‖θ‖2. Nous mon-
trons que de façon équivalente (Lemme 5.4), l’OSMP prédit

ŷt = −L+1?
λ,t + L−1?

λ,t

avec Ly?λ,t := infθ∈Rd
{
`(θ>xt, y) + Lλ,t−1(θ)

}
pour y ∈ {−1,+1}. Cela donne un

algorithme explicite (l’Algorithme 1) pour le calcul de l’OSMP. Concernant l’analyse
du regret de l’OSMP, nous écrivons le regret de la façon suivante

Regretn(θ) =
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(θ>xt, yt) 6 λ ‖θ‖2 +
n∑
t=1

r̂t,

où nous désignons r̂t := `(ŷt, yt) − L?λ,t + L?λ,t−1 le regret instantané du temps t.
Nous déduisons la borne supérieure suivante

r̂t 6 e · σ′(〈θt, xt〉) · ‖xt‖2(∇2Lλ,t(θt))−1
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dont la preuve repose sur la self-concordance généralisée [Bach, 2010] de la fonction
Lλ,t. Cependant, notre analyse de regret pour l’OSMP s’arrête là. En particulier, la
valeur de la matrice hessienne ∇2Lλ,t(θt) dépend du point θt où elle est évaluée, et
nous ne connaissons pas de moyen de contrôler une telle matrice hessienne condui-
sant à une borne supérieure de regret qui est logarithmique en n et sans facteur
exponentiel en BR, voir la Section 5.5.3 pour plus de détails.

Pour contourner cette difficulté, nous introduisons le Approximated One-Step
Minmax Predictor (AOSMP) suivant, défini par

ŷt = argmin
ŷ∈R

sup
yt∈{−1,+1}

sup
θ∈Rd

{
L̂t−1 + `(ŷ, yt)−

(
`(θ>xt, yt) + L̃t−1(θ) + λ ‖θ‖2

)}
avec L̃λ,t−1(θ) := ∑t−1

s=1
˜̀(θ>xs, ys) + λ‖θ‖2. Cette formulation étant dans le même

esprit minmax que l’OSMP, la différence est que dans l’AOSMP, nous remplaçons
la fonction Lt−1 par son approximateur quadratique L̃t−1. Nous nous appuyons sur
l’approximation quadratique de la fonction logistique introduite pour la première
fois dans Jézéquel et al. [2020, Lemma 5], à savoir

˜̀
t(θ) := `t(θ̃t) + g>t (θ − θ̃t) + 1

2ηt
(
x>t (θ − θ̃t)

)2
,

avec gt := ∇`t(θ̃t), ηt := σ′(〈θ̃t, xt〉)/(1 +BR) et nous choisissons

θ̃t = argmin
θ∈Rd

L̃ytλ,t(θ) avec L̃yλ,t(θ) := `(θ>xt, y) + L̃λ,t−1(θ).

Pour les mêmes raisons que pour l’OSMP, l’AOSMP prédit

ŷt = −L̃+1?
λ,t + L̃−1?

λ,t

avec L̃y?λ,t := infθ∈Rd
{
`(θ>xt, y) + L̃λ,t−1(θ)

}
pour y ∈ {−1,+1}, et cela donne un

algorithme explicite (Algorithme 2). Ensuite, nous sommes en mesure d’appliquer
les techniques classiques avec les formes quadratiques pour borner la somme des
pseudo regrets instantanés, pour obtenir la borne suivante (Theorème 5.19) sur le
regret de l’AOSMP

Regretn(θ) 6 e · (1 +BR)d log
(

1 + nR2

8d(1 +BR)λ

)
+ λ ‖θ‖2 .

En particulier, le choix λ = R2 donne

Regretn 6 e · (1 +BR)d log
(

1 + n

8d(1 +BR)

)
+B2R2.

Ainsi nous obtenons pour l’AOSMP une borne supérieure de regret similaire à
celle d’AIOLI [Jézéquel et al., 2020], en partie parce que nous utilisons la même
approximation quadratique.

Globalement, dans ce travail, nous proposons et analysons deux algorithmes
inspirés du SMP [Mourtada and Gaïffas, 2019] pour la régression logistique en
ligne : pour OSMP, nous avons seulement trouvé une limite supérieure pour le
regret instantané r̂t 6 e · σ′(〈θt, xt〉) · ‖xt‖2(∇2Lλ,t(θt))−1 ; pour AOSMP, nous avons
prouvé une limite supérieure de regret dans un ordre similaire avec l’algorithme de
pointe [Jézéquel et al., 2020] pour la régression logistique binaire en ligne au meilleur
de notre connaissance. La question d’un algorithme efficace avec une meilleure limite
supérieure de regret pour la régression logistique en ligne reste ouverte.
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CHAPTER 1. INTRODUCTION

This thesis deals with the general topic of machine learning, a general frame-
work for the problem of retrieving information and making decisions from data.
While the recent decade has seen the revival of neural networks re-branded as deep
learning [LeCun et al., 2015] and its many successful real-world applications with
the help of larger datasets and stronger computational capacities, methodological
research in machine learning is more than ever crucial to the progress of such a
field, enabling the design of new algorithms with desirable properties as well as the
deeper understanding of some practical success.

In this thesis, I worked on the applications of deep learning on public health data,
and also on theoretical and numerical studies of some machine learning problems.
The first contribution consists of leveraging the medical claims data available in
French national system of health data using deep learning (Chapter 2). Then, the
contributions are focused on the topics of contrastive learning (Chapter 3), ensemble
tree-based methods (Chapter 4), and online logistic regression (Chapter 5).

This introduction chapter gives a quick overview for each of these works. In
the rest of this opening chapter, we give a presentation of each of the problems
that appears in this thesis, as well as their background and some necessary tools,
followed by a brief summary of the contributions of the present thesis.

1.1 Deep Learning and applications in healthcare

Healthcare is an important application area of artificial intelligence and machine
learning, with profound consequence and significant potential benefice for social
good [Bommasani et al., 2021; Villani et al., 2018]. At the same time, developing
efficient algorithms to learn appropriate representations of structured data, includ-
ing sequences of timestamped events, is a major yet challenging problem in machine
learning. As deep learning has shown impressive performance in many application
domains (Computer Vision [Chen et al., 2020; He et al., 2020; Krizhevsky et al.,
2012], Natural Languages Processing [Brown et al., 2020; Devlin et al., 2018]), the
question of leveraging patient-centered healthcare records available in large obser-
vational databases using such techniques naturally become of great interest.

1.1.1 Large observational databases in healthcare: EHRs, medical
claims data

In the domain of healthcare, with a fast adaptation towards information systems in
the past decades, it became possible to collect and store large amounts of health-
care data, which are rich in information and sensitive by their nature. These large
amounts of patient-centered data were made available through some different stake-
holders in the domain of healthcare providers: clinics and hospitals, insurance com-
panies, public institutions. This broad kind of large observational databases are the
type of data that we are interested in this work.

We can roughly distinguish between two categories of healthcare data that are
acquired by re-purposing administrative ones: Electronic Health Records (EHRs)
and medical claims data. These two types of data share lots of similarities with
some specificities [FDA, 2021], while sometime confusions are made in using the
two terms.

Under the name of EHRs are generally designed data directly produced by
healthcare providers, such as hospitals and clinics, for clinical care support and
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billing purpose. EHRs are often fine-grained, including demographic information
such as gender, age, location, sometimes also patients’ living habits such as smoking
status, alcohol consumption and medical history. Most importantly, EHRs often
come with exact information on provided cares, such as drug prescriptions, medical
procedures, diagnoses, bed-side vital signs in case of Intensive Care Units (ICU),
sometimes including also free-text medical reports, laboratory analysis including for
example imaging and imaging reports, and other clinical observations and reports.
A freely accessible database of ICU data and hospital information MIMIC-III [John-
son et al., 2016] is often seen as a reference for EHRs, in particular for benchmarking
works [Bellamy et al., 2020; Harutyunyan et al., 2019]. The recently released suc-
cessor MIMIC-IV [Johnson et al., 2020] includes more complex and more complete
data such as emergency department data, chest X-Ray images and free-text clinical
notes.

Medical claims data are collected by insurance companies or agencies (thus
indirectly from healthcare providers), with primarily administrative purpose of re-
imbursement. Medical claims data are often in form of timestamped events, i.e.
drug prescriptions, medical procedures, hospital diagnoses. While medical claims
data share many similar characteristics with EHRs, and often have the advantage
of covering a larger number of population across numerous hospitals or healthcare
providers, medical claims data often contain fewer details and may be less accurate
than EHRs. For example, bed-side vital signs could rarely be included in medical
claims data; the exam results of medical imaging is not contained, but the code for
this imaging with indications on the body part is included in claims data (since this
is required for reimbursement).

In France, the SNDS (National Health Data System – Système National des
Données de Santé, formerly known as SNIIR-AM – National Health Insurance In-
formation System – Système National d’Information Inter-Régimes), is an example
of medical claims data [Tuppin et al., 2017]. It includes healthcare reimbursement
records for nearly all French residents. Through the partnership between Caisse
Nationale de l’Assurance Maladie (the French agency managing the national health
insurance system – CNAM), and Data Science Initiative from École polytechnique,
we had the opportunity to have access to an extract of the SNDS data with the
help of SCALPEL3 [Bacry et al., 2020]. This database is at the core of our work
presented in Chapter 2.

Challenges and opportunities with EHRs and medical claims data

Before going into details with SNDS, let us first describe in a non-exhaustive way
some practical challenges relating to the healthcare data.

• Practitioners should pay particular attention on the data quality. As the
primary goal for both EHRs and medical claims data is to assist the delivery
of care and the billing, there could be mistakes in data entry, and biases from
data collection. The data extraction step might also introduce some mistakes
or biases.

• Benchmarking and reproducibility are important for the scientific com-
munity [Bellamy et al., 2020] to be able to compare across different datasets
or different models, despite the sensitive nature of the healthcare data and
possibly some compliance rules for in-house datasets.

9
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• Although the predictive performance could be convincing for its own in some
cases, models with interpretability are often preferred [Luo et al., 2019;
Shickel et al., 2017; Xiao et al., 2018] in the domain of healthcare.

• Data privacy is particularly important when it comes to healthcare data.
Effective de-identification of patient data is a crucial step before any research:
this is indeed the case for the SNDS [Tuppin et al., 2017].

Furthermore, some specific attention should be paid in works involving EHRs
and medical claims data, in particular in the modelling of the healthcare pathways
from these data.

• As a particular form of structured data with sequences of timestamped
events, such as drugs prescriptions, medical procedures, hospital diagnoses,
EHRs and claims data can also arise patient demographic information, med-
ication dosage, etc. It is vital that the designed model is adapted to these
specificities. Some practical examples includes, how to take into account med-
ication dosage information alongside the drug in form of its CIP-13 codes?
How to take into account the patient age information, as we know the age
itself can tell a lot on the health status?

• Modelling the sequences of timestamped events is a crucial problem.
Designing models that are adapted to data structure is important, in partic-
ular when in comes to deep neural networks models. Some recent research [Li
et al., 2020] draw the parallel to NLP, in which case the medical codes are
viewed as “words” such that the encounters or patients are viewed as “sen-
tences” or “documents”. Besides, the irregularity of the timestamps for the
medical events that occur on the patient timeline, and the aggregation at
different levels of the patient timeline, are some additional difficulties to this
modelling problem.

• Learning appropriate and useful representations for medical codes is an im-
portant step, and can be a goal itself. Since there is often no explicit label in
EHRs and medical claims data, data preprocessor may need to look at long
term drug prescription history to be able to deduce some long-term diseases
such as diabetes [Morel et al., 2019]; another direction is to design surrogate
tasks such as masked prediction [Li et al., 2020]. Next, efficiently building rep-
resentations for healthcare status from learned medical codes representations
is also challenging.

• Effective evaluation is critical when it comes to assess models and pipelines.
In terms of prediction targets, while predicting the mortality and the length-
of-stay are some classical targets in EHRs ICU data [Rajkomar et al., 2018],
disease detection or classification [Li et al., 2020], sequential prediction of
medical events are also popular tasks on both EHRs and medical claims data.
Most of these tasks, if not all, require careful and proper data processing to
avoid that the features indirectly contain the labels. The lower-dimensional
projection and visualization of learned representations for the medical codes
might be helpful for qualitative assessment.

However, the research interest on EHRs and medical claims data is growing,
especially using deep learning models recently. The reason is first and foremost for
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the applications opportunities in such a field, as well as enormous social impact it
involves [Bommasani et al., 2021; Villani et al., 2018]. Also, efficiently and success-
fully modelling the sequences of timestamped events can be of interest for other
situation other than the healthcare, for example user behavior modelling.

The French national system of health data (SNDS)

SNDS gathers reimbursement data from most state health insurance schemes, and
aggregates data from multiple authorities such as hospitals and local agencies. At
its creation in 2016, SNDS contained health reimbursements of 66 million French
residents, representing 98.8% of the country’s population [Tuppin et al., 2017]. Al-
though SNIIR-AM was initially used to monitor health expenditures and to evaluate
health care utilization across the country, from 2016, some drug safety studies [Bezin
et al., 2017] and epidemiological studies [Aguade et al., 2020; Feldman et al., 2021]
have been conducted on SNDS thanks to individual data availability.

The quality of SNDS data results from mandatory logging of reimbursed care
in France, three data validation stages, and pseudonymization routines. Thanks
to its history length, high population coverage, and quality, SNDS can be used to
conduct epidemiological studies with a high statistical power and is almost exempt
of representativity biases [Neumann et al., 2012; Tuppin et al., 2017].

There are two data sources for SNDS: DCIR (Inter-scheme consumption data —
Données de Consommation Inter-Régimes) contains outpatients billing and reim-
bursement information, PMSI (medical information system program — Programme
de Médicalisation des Systèmes d’Information) gathers hospital stay data.

DCIR contains demographic information of the beneficiaries (date of birth, gen-
der, town of residence, and variables indicating whether patients are beneficiaries of
specific social subsidies), and information on their possible disabilities or long-term
diseases. More importantly, DCIR provides timestamped reimbursement informa-
tion concerning drug purchases (drugs are coded with the ATC (Anatomical Ther-
apeutic Chemical) classification system), medical procedures (coded with CCAM
– the French medical procedures classification – Classification Commune des Actes
médicaux), laboratory analyses (coded with NABM – the classification of clinical
pathology procedures – nomenclature des actes de biologie médicale), and medical
products (LPP – the list of product and services – Liste des produits et prestations).

PMSI is made up of four databases: MCO (acute care ward — Médecine,
Chirurgie, Obstétrique et Odontologie), SSR (rehabilitation care – Soins de Suite
et Réadaptation), HAD (home care — Hospitalisation À Domicile), and PSY (psy-
chiatric care). These databases contain pseudonymized hospital stays summaries,
i.e. starting and ending dates of hospital stays, diagnoses (coded with ICD-10 –
the International Classification of Diseases, 10th revision), and medical procedures
(coded with CCAM). In contrast to some well-know EHRs (for example MIMIC-
III [Johnson et al., 2016]), a difficulty with PMSI is that it comes from hospital stay
summaries hence there is no information regarding the order or the temporality of
the events, but only start-end dates with all the events happening throughout one
hospital stay. PMSI also contains similar timestamped information for outpatient
consultations.

Accessing to SNDS data requires authorization from the CNIL (Commission
Nationale de l’Informatique et des Libertés), the French data protection author-
ity, according to legal compliance and public interest. Recently, the Health Data
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Hub [Cuggia et al., 2018], a new governmental agency, was created. The aim is
to make methodological research easier on SNDS and similar data, by centralizing
health data, and by providing accesses with hardware and software infrastructure,
at the same time under CNIL’s compliance. Our extracted dataset is built upon
the join and extraction work by the SCALPEL3 framework [Bacry et al., 2020].

1.1.2 Contribution: ZiMM, a deep learning model for long term
and blurry relapses with non-clinical claims data

The work presented in Chapter 2 is an attempt to address some challenges described
in the previous Section 1.1.1, in form of a study on a concrete medical example using
recent tools from the deep learning.

In this work, we consider the problems of modeling and predicting a long-term
and “blurry” relapse that occurs after a medical procedure, such as a surgery. We do
not consider a short-term complication related to the procedure itself, but a long-
term relapse that clinicians cannot explain easily, since it depends on unknown
sets or sequences of past events that occurred before the procedure. The relapse is
observed only indirectly in a “blurry” fashion, through longitudinal prescriptions of
drugs over a long period of time after the medical procedure.

As stated previously, our motivation for using SNDS, a non-clinical medical
claims database, is its exhaustivity population-wise, compared to EHRs coming
from a single or a small set of hospitals. Indeed, we consider an extracted dataset
containing the medical claims of almost all French residents who had surgery for
prostatic problems, with a history between 1.5 and 5 years.

Patient timeline, study cohort, labels

A patient with several types of events is illustrated in Figure 1.1 using a timeline
representation. This can be considered as a sequence of timestamped events zik =
(dik, tik) with dik medical code that happened as a medical event on the patient i at
time tik.
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Figure 1.1 – Illustration of the sequence of claims observed for a patient. Through claims,
we observe three types of events: drug purchases (blue), medical procedures (red) and
diagnosis (yellow) before the medical act (prostate surgery in the example) that happens at
time T i for patient i. All events are timestamped, and the time delta is a day long. Several
events can occur the same day and some days have no event: events are typically very
irregularly sampled. All these events, observed before T i, are used to learn the embedding
vector xi ∈ Rd of patient i. After T i, we only keep the events corresponding to the blurry
relapses considered (drug purchases among a set of drugs for urinary problems). These
blurry relapses are used to build the label vector yi ∈ NB of patient i.

We extract patients with transurethral resection of the prostate (TURP) surgery
in SNDS, through some specific CCAM codes provided by clinicians1. Some ad-

1We considered that a TURP surgery corresponds to the CCAM codes JGFA005, JGFA009,
JGFA015, JDPE002 or JGNE003.
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ditional inclusion and exclusion criteria are applied to ensure data quality; in the
main study, the final cohort includes 138 976 patients.

As far as the labels (post-surgical urinary problems) are concerned, a simple but
efficient way to identify whether the urinary problems have not ceased or reappeared
after a while is to see if the patient, at some point after the surgery, needs to take
medications for these urination problems again. For that purpose, we use a list
(provided by clinicians) of 136 CIP-13 drugs that are mainly related to urination
problems. We choose to drive the prediction on a 18-months period after T i. In
other words, we chose the number of buckets B = 18 and bucket size of 30 days
(540 days total).

Zero-inflated Multinomial Mixture model

Here we consider a long-term (18 months) relapse (urination problems still occur
despite surgery), which is blurry since it is observed only through the reimbursement
of a specific set of drugs for urination problems. To best capture long-term and
blurry relapses, we introduce Zero-inflated Mixture of Multinomial distributions
model (ZiMM).

We denote by ni = ∑B
b=1 yi,b the overall number of blurry relapses of patient

i. The following model is proposed to model the whole vector yi, so that ni is not
fixed and includes zero-inflation, namely a parametrized likelihood for ni = 0. We
suppose that ni ∈ {0, 1, . . . , B} is distributed (conditionally to xi) as

ni ∼ Categorical(π0(xi), π1(xi), . . . , πB(xi)),

which means that

P(ni = k|xi) = πk(xi) for k ∈ {0, . . . , B},

where πb(xi) are such that ∑B
b=0 πb(xi) = 1 and πb(xi) > 0 (coming out of a

softmax activation for instance). These parameters correspond to the categorical
distribution specific to patient i. Then, we assume that the distribution of yi
conditional to ni = b and xi follows either a Dirac distribution on vector (of size
B) [0, . . . , 0] whenever b = 0, or a multinomial distribution of parameters b and
pb,1(xi), . . . , pb,B(xi), namely

yi|(xi, ni = b) ∼
{
δ[0,...,0] if b = 0,
Multinomial(b, pb,1(xi), . . . , pb,B(xi)) otherwise,

where pb,1(xi), . . . , pb,B(xi) are the parameters of a multinomial distribution when-
ever ni = b, for each b = 1, . . . , B. Once again, these parameters are specific to
patient i.

On top of this probabilistic modelling of post-surgical complication, we build an
end-to-end deep-learning architecture called ZiMM Encoder-Decoder (ZiMM ED)
that can learn from the complex, irregular, highly heterogeneous and sparse patterns
of health events that are observed through a claims-only database.

ZiMM Encoder

Codes are first tokenized, and each unique token is individually mapped to an
embedding vector in RdE which is learned during training. We consider only tokens
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Figure 1.2 – ZiMM Encoder-Decoder end-to-end architecture.

that occur at least 50 times in the training dataset. For any event occurring at time
t 6 T i in the observation period of patient i, we compute the “time horizon” as
T i− t, namely the distance (in days) between the event and medical act. Moreover,
whenever it makes sense, we compute end− start, the duration of the event, which
corresponds to the duration of an hospital stay defined as the time between hospital
admission and discharge. These two integers (in number of days) are also tokenized
and replaced by a learned embedding vector. This allows the encoder to learn to
put more or less emphasis on events that are close or far from T i, and to exploit
the duration of events as a proxy for severity of medical procedures and diagnoses.
The patient age in years at T i is also similarly bucketized and embedded.

Then, several events can occur at the same time (within the same day), so that
the number of codes observed within a day is highly heterogeneous. Moreover, such
codes are not likely to contribute equally to the vector representation of the day,
and their order is not informative.

Hence, we use a self-attention mechanism [Lin et al., 2017; Vaswani et al., 2017]
using a bag-of-features approach to learn how to combine embedding vectors within
the same day, following previous successful applications of self-attention for fusing
disease embeddings [Luo et al., 2019].

In the following, we obtain sequence of fixed-sized embedding vectors that en-
code both medical and time information at each (non-empty) timestamp t 6 T i,
as displayed in Step (4) of Figures 1.2. Now, this sequence of vectors is used as
the input of a stack of layers, including recurrent layers (LSTM [Hochreiter and
Schmidhuber, 1997], bi-directional LSTM [Schuster and Paliwal, 1997], GRU [Cho
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et al., 2014]) or convolutional layers, in a sequence-to-one network architecture,
since we want to output a single vector xi ∈ Rd that encodes the full pathway of a
patient before T i.

Finally, the output vector of the encoder is concatenated with an embedding
vector of the age of the patient, leading to the final vector xi ∈ Rd that encodes
the full pathway of patient i, representing her health status in a whole, serving as
input to the following decoder.

ZiMM Decoder

The decoder uses vector xi ∈ Rd representation of health status of patient i to
construct the parameters of the ZiMM model, and the whole architecture is trained
against the negative log-likelihood of the ZiMM model computed at the label vector
yi = [yi,1, . . . , yi,B] containing the blurry relapses. Since parameters {πb(xi)}b=1...,B
and {pb,b′(xi)}b,b′∈{1,...,B}2 are highly dependent and are time-ordered, a specific
architecture is used to model these dependencies: fully connected feed-forward layer
(FFN) followed by a recurrent layer (RNN). Finally, a softmax activation is applied
on hbt along t = 1, . . . , B to produce the parameters pb,1(xi), . . . , pb,B(xi).

Experiments

Our experiments show that ZiMM ED improves several baselines, including non-
deep learning and deep-learning approaches, and that it allows working on such a
dataset with minimal preprocessing work.

Table 1.1 – Predictive performances (on test data) of benchmark models and ZiMM ED
architecture. ZiMM ED appears to perform the best among all models both for multi-output
and binary prediction.

Model mean-AP AUC-ROC AUC-PR
LRl2-SF 0.19 0.64 0.50
GBDT-SF 0.24 0.67 0.56
MLP-SF 0.18 0.64 0.49
LRl2-DF 0.21 0.65 0.53
GBDT-DF 0.25 0.68 0.57
MLP-DF 0.19 0.65 0.50
Word2vec-ISS 0.20 0.65 0.53
LSTM-ISS 0.21 0.67 0.54
Patient2Vec - 0.68 0.55
ZiMM ED 0.306 0.701 0.619

We implemented ZiMM under Tensorflow2. All our experiments use the same
random data splitting into 70% of patients for training, 15% of patients for valida-
tion and 15% for testing. As for evaluation metrics, we use mean-AP, defined as the
average of the area under the precision-recall curve (AUC-PR), namely we compute
the average over the buckets b = 1, . . . , B of the AUC-PR for each bucket b, i.e.,
the AUC-PR of the prediction of yi,b. Moreover, we report also the AUC-PR and
the AUC-ROC (area under the ROC curve) for the binary classification problem
ni > 0 against ni = 0.

15



CHAPTER 1. INTRODUCTION

The predictive performance of all benchmarks and of ZiMM ED are presented
in Table 1.1, where we report mean-AP scores on the test set, as well as AUC-PR
and AUC-ROC scores for the binary classification problem. GBDT-based models
on dynamic features (GBDT-DF) performs the best among all benchmark models,
however the ZiMM ED architecture outperforms all the benchmark models both for
the multi-output yi prediction and for the binary prediction.

In the ablation study, we modify some hyperparameters or change some com-
ponents of ZiMM ED default, and report the impacts on performances in details in
Table 2.4, where the first line reports the performances of ZiMM ED default. And
we made careful discussion around each component of the model.

To wrap up, the work presented in Chapter 2 addresses the problem of predicting
the blurry relapses of the TURP surgery, which is the first step towards an evidence-
based approach using machine-learning to help the clinical decision.

1.2 Contrastive learning, unsupervised learning and su-
pervised learning

The motivation of the work presented in Chapter 3 is to better understand the
recently popular unsupervised and self-supervised training techniques, from a mod-
elling point of view.

The problem of learning appropriate and useful representations for words and
sentences naturally arises in languages modelling, in the unsupervised setting. Let
us trace the line of research of the recent successes of contrastive learning.

The skip-gram [Mikolov et al., 2013a] model considers the conditional proba-
bilities p(c | w) where w stands for a word and c stands for a context. Denote θ
the parameter for p(c | w; θ), then the goal is to find θ that maximizes the corpus
probability ∏

w

∏
c∈C(w)

p(c | w; θ) =
∏

(w,c)∈D
p(c | w; θ)

where C(w) denotes the set of all contexts related to word w, D denotes the set of
all context and word pairs. Extracting such pairs (w, c) from a text is natural and
easy. Denote vc and vw the vectorized representations (or embeddings) for a context
c and a word w respectively. The neural networks language modelling literature
usually models the conditional probability using the softmax function, namely

p(c | w; θ) = exp(v>c vw)∑
c′∈C exp(v′>c vw)

where C denotes the set of all available context. Taking the log and combining both
expressions leads to

∑
(w,c)∈D

log p(c | w; θ) =
∑

(w,c)∈D

v>c vw − log
∑
c′∈C

exp(v′>c vw)

 .
Practitioners believe [Goldberg and Levy, 2014; Mikolov et al., 2013b] that train-

ing neural networks with the objective above will result in good words embeddings,
in the sense that similar words that occur in similar contexts, will have similar
embeddings. A downside of skip-gram is that it is expensive to compute the denom-
inator term in the softmax, as well as the term log∑c′∈C exp(v′>c vw), as it involves
to sum over all possible contexts c′ ∈ C.
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Based on this observation, the negative sampling [Mikolov et al., 2013b] aims
to derive meaningful embeddings while being computationally efficient. Consider
p(P = 1 | w, c; θ) the probability that a pair (w, c) actually comes from the corpus
text, for any word w and any context c; and p(P = 0 | w, c; θ) the probability that
a pair (w, c) actually does not come from the corpus text. These probabilities are
modeled with the sigmoid function σ(u) = 1/(1 + exp(−u)), with

p(P = 1 | w, c; θ) = σ(v>c vw) = 1− p(P = 0 | w, c; θ).

Then, the approach aims to maximize the following quantity, for any pair (w, c) in
corpus,

p(P = 1 | w, c; θ)
∏

(w,ci)/∈D
p(P = 0 | w, ci; θ).

Taking the log, it yields

log σ(v>c vw) +
∑

(w,ci)/∈D
log σ(−v>c′ vw).

With some practical tricks such as dynamic window size, down-sampling of frequent
words, rare words pruning, this approach is experimentally shown [Mikolov et al.,
2013b] to be efficient to learn words embedding from text.

Several recent works further extend the idea of using naturally pair occurrence to
unsupervisedly learn representations. Contrastive Predictive Coding (CPC) [Oord
et al., 2018] learns representations of objects that natural lie on a sequence, by
predicting future observations using a contrastive loss. The idea is to maximize the
mutual information

I(x, c) =
∑
x,c

p(x, c) log p(x | c)
p(x)

between the encoded representations of (future) target x and (present) context c.
The objective of CPC is the following contrastive loss, also called InfoNCE,

L = EX

[
− log fk(xi,t+k, ci,t)∑

xj∈X fk(xj , ci,t)

]

where X = {x1, . . . , xN} is a set of N random samples containing one positive
sample from p(xt+k | ct) and N − 1 negative samples from the distribution p(xt+1);
and fk(xt+k, ct) stands for the density ratio between xt+k and ck, fk(xt+k, ct) ∝
p(xt+k | ck)/p(xt+k), modeled by

fk(xt+k, ct) = exp(gencoder(xt+k)>Wkck)

where Wkck denote a linear transformation of ck. CPC has practical success in
audio, vision and natural languages [Oord et al., 2018].

In particular, combined with a pre-training strategy [Hénaff et al., 2020], repre-
sentations learned with the contrastive loss in an unsupervised fashion are shown
to be useful for some down-stream classification tasks. Hénaff et al. [2020] uses a
pretrained image encoder followed by simple classification layers, that are trained
on a fraction of the labels available, allowing to achieve an accuracy comparable to
that of a fully supervised end-to-end training. In the same pre-training – fine-tuning
fashion with contrastive loss during the pre-training phase, MoCo [He et al., 2020],
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SimCLR [Chen et al., 2020], SwAV [Caron et al., 2020], BYOL [Grill et al., 2020]
are some improvements to successfully learn visual representations.

Let us summarize the common pre-training approach: provided a dataset, an
encoder is trained using a contrastive loss whose minimization allows to learn en-
coders giving embeddings that are similar for pairs of samples (called the positives)
that are close to each other (such as pairs of random data augmentations of the
same image, see Chen et al. [2020]; He et al. [2020]), while such embeddings are
contrasted for dissimilar pairs (called the negatives).

Although Saunshi et al. [2019] proposed a formalism together with results on
classification performance based on unsupervisedly learned representation, these
results do not explain the performance gain that is observed empirically [Chen et al.,
2020; He et al., 2020] when a high number of negative samples are used. On the
other hand, Allen-Zhu et al. [2019] proved that, over sufficient over-parametrization
of deep neural networks, the optimization with GD and SDG of the `2-loss converges,
as well as for RNN.

However, despite growing efforts [Saunshi et al., 2019; Wang and Isola, 2020],
few theoretical results have been obtained as of the time of our work. For instance,
there is no clear theoretical explanation of how a supervised task could benefit
from an upstream unsupervised pre-training phase, or what could be the theoretical
guarantees for the convergence of the minimization procedure of the contrastive loss
during this pretraining phase.

1.2.1 Contribution: theoretical guarantees on the contrastive un-
supervised representation learning for classification and on
its convergence

Following the framework first proposed in Saunshi et al. [2019], assume that we are
able to sample positive pairs (x, x+) from the distribution

Dsim(x, x+) =
∑
c∈C

ρ(c)Dc(x)Dc(x+), (1.1)

namely, (x, x+) is sampled as a mixture of independent pairs conditionally to a
shared latent class, sampled according to ρ. On the other hand, we assume that we
can sample negative samples x− from the distribution

Dneg(x−) =
∑
c∈C

ρ(c)Dc(x−). (1.2)

Under the assumptions given in Equations (1.1) and (1.2), we consider the following
unsupervised contrastive loss with N negative samples,

LNun(f) = E(x,x+)∼Dsim
X−∼D⊗Nneg

− log

 exp
(
f(x)>f(x+)

)
exp (f(x)>f(x+)) +∑

x−∈X− exp (f(x)>f(x−))

 ,
(1.3)

where D⊗Nneg stands for the N tensor product of the Dneg distribution given by
Equation (1.2).

Proposition (Proposition 3.3). Consider the unsupervised loss LNun(f) from Equa-
tion (1.3) with N negative samples. Assume that ρ is uniform over C and that
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2 6 k + 1 6 NC. Then, any encoder function f : X → Rd satisfies

Lsup,k(f) 6 Lµsup,k(f) 6 k

1− τ+
N

(
LNun(f)− τ+

N log(N + 1)
)

with τ+
N = P

[
ci = c,∀i | (c, c1, · · · , cN ) ∼ ρ⊗N+1

]
.

These results hold for an arbitrary large number of negatives and decoupled
from the number of classification tasks. We provide new theoretical guarantees
for the classification performance of contrastively trained models in the case of
multiway classification tasks, using multiple negative samples. We extend results
from Saunshi et al. [2019] to show that unsupervised training performance reflects
on a subsequent classification task in the case of multiple tasks and when a high
number of negative samples is used.

Also, we provide a convergence result (Theorem 3.5) for an explicit algorithm
(gradient descent), when training overparametrized deep neural network for unsu-
pervised contrastive representation learning. We explain how results from Allen-Zhu
et al. [2019] about training convergence of overparametrized deep neural networks
can be applied to a contrastive learning objective.

Let us remark that since the time of this work, theoretical foundations for
contrastive learning and self-supervised learning is an extremely active and recently
competitive research sub-area [Chuang et al., 2020; Tian et al., 2021; Tosh et al.,
2021; Wei et al., 2020].

1.3 From Random Forest to WildWood
In the work presented in Chapter 4, we focus on ensemble tree-based algorithms.
Under the batch supervised learning setting, data comes as a set of i.i.d. samples
(xi, yi) for i = 1, . . . , n, with features xi ∈ X and labels yi ∈ Y. We consider
quantitative and categorical features.

1.3.1 Random Forest: general principles

Let us first provide some background on Random Forest [Breiman, 2001], an im-
portant building block of WildWood.

Ensemble methods

In machine learning, under the name of ensemble methods, we refer to the general
procedures that generate multiple predictors then combine them into one of better
quality. The two principal families in the ensemble methods are boosting and
bagging.

• Boosting [Freund and Schapire, 1997; Friedman, 2001] consists in successively
combining base classifiers returned by a weak learner, to create a more accu-
rate learner. In other words, boosting algorithms combine “simple” predictors
(i.e. predictors with big approximation error), for example decision trees with
a small depth.

• Bagging (or bootstrap aggregation) [Breiman, 1996] consists in combining
multiple realizations over bootstrap samples of a “complex” predictor (i.e.
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noisy but approximately unbiased predictor), for example fully grown decision
trees.

Random Forests (RF), proposed in Breiman [2001], and inspired by previous
works of Amit and Geman [1997]; Ho [1998], was in the spirit of bagging, based
on tree models [Breiman et al., 1984]. Tree models are able to capture complex
patterns, but fully grown trees overfit very easily on the training data: such property
makes such tree-based models an ideal candidate for bagging. DenoteM the number
of individual trees. RF builds each tree on bootstrap samples: each time, n elements
of index of training samples I = {1, . . . , n}, corresponding to in-the-bag (itb)
samples, are uniformly selected at random with replacement. In classification tasks,
RF takes the majority vote over predictions of all decision trees, or returns the
average of probabilities of each class predicted by each tree; in regression tasks, RF
takes the average predictions of all decision trees, i.e.

ĝ(·; Π) =
{
majority vote{f̂(;̇Πm)}m=1,...,M , in classification tasks;
1
M

∑M
m=1 f̂(·; Πm), in classification or regression tasks,

with Πm denoting the randomness (including that from samples bootstrap and
from features sub-sampling) corresponding to the m-th tree, f̂(·; Πm) the predictor
corresponding to the m-th tree, ĝ(·; Π) the RF predictor, and Π = (Π1, . . . ,Πm)
with Π1, . . . ,Πm i.i.d. realizations.

Overall, in Breiman’s words [Breiman, 2001], “each tree depends on the values
of a random vector sampled independently and with the same distribution for all
trees in the forest”. We note that each tree is built independently of each others,
so that tree training can be done in parallel.

Tree and tree predictor

In the following, we describe, in RF, the construction of each tree [Breiman et al.,
1984], and the predictor that corresponds to the tree, i.e. how f̂(·; Πm) is con-
structed. For simplicity, we omit the index m = 1, . . . ,M , and use Iitb to denote
indexes of in-the-bag samples for the tree we consider. We focus on binary trees
here.

A tree-based predictor partitions the features space X into rectangles (for contin-
uous features) or discrete subsets (for categorical features) called cells, and provides
simple (often constant) predictions on each cell. Since the partition can be com-
plex, even with simple cell predictions, tree-based methods are powerful and able to
capture complex and non-linear patterns. For tree growing, we recursively partition
the features space, by successively applying splits into two cells. A decision tree
predictor f̂ : X → Ŷ has the following properties.

• A finite partition C of X is said to be a tree partition if it is associated to

– a finite ordered binary tree T : each node v that is different to root has
a unique parent, and either has two child nodes – with left child node
denoted v0 and right one denoted v1, in which case v is an interior node,
or no child node – in which case v is a leaf ;

– a family of splits Σ = (σv)v indexed by the interior nodes of T : a split
is denoted by σv = (jv, tv), where jv ∈ {1, . . . , d} indicates the index
of the feature, and tv indicates a range of the feature’s values less than
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a threshold (split on a numerical feature) or a subset of the feature’s
modalities (split on a categorical feature).

We associate to each node v of T a cell Cv ⊆ X , recursively in the following
way

– the cell associated to root is Croot = X ;
– for each interior node v, given its cell Cv and split σv = (jv, tv), we

define
Cv0 = {x ∈ Cv : xjv ∈ tv} and Cv1 = Cv \ Cv0.

From this, the cells Cv of all leaves v of T form a partition C of X , associated
to (T ,Σ).

• Then, we define the predictor of the tree (T ,Σ) by f̂(T ,Σ) : X → Ŷ, x 7→ ŷC(x),
where C(x) is the unique leaf containing x. A prediction ŷCv is associated to
each leaf v of T , i.e. to each cell Cv of C . In regression tasks, the predictor
of a leaf cell Cv is usually the empirical mean of all itb training samples in
Cv

ŷCv = 1
card{i ∈ Iitb, xi ∈ Cv}

∑
i∈Iitb,xi∈Cv

yi

In classification tasks, the predictor of Cv can be the majority vote of all itb
training samples in Cv

ŷCv = majority vote{yi}i∈Iitb,xi∈Cv

or the density estimation based on all training samples {(xi, yi)}i∈Iitb,xi∈Cv

in the cell, e.g. empirical frequencies for each class, or a Bayes predictive
posterior.

A tree is grown successively by finding a split at each node v, until meeting
the stopping criterion. To find such a split σv, we proceed greedily: for each
feature indexed by j, we determine the optimal split σv,j along the feature j, in the
sense of the criterion; we do so and loop over all the currently available features
j ∈ sub-sampling{1, . . . , d} (as for features sub-sampling); then we take the best of
such splits σv,j in the sense of the criterion, as the actual split σv. To be able to
do so, we need a criterion P(X ) → R to measure the qualities of possible splits:
the smaller the criterion function value is, the more suitable the split is on the data
contained in the current cell Cv, the better the split is. In classification, the Gini
index and the cross-entropy are popular choices for the criterion. In regression, the
sum of squares is usually used as the criterion.

In RF [Breiman, 2001], an additional source of randomness is the feature sub-
sampling: for each split, m 6 d features are randomly and uniformly selected
(without replacement); only thesem features can be candidates for the current split.
Typical values are m =

√
d or m = log d or m = d/3 (for regression). Feature sub-

sampling allows to introducing more variability and to further reducing correlation
between the trees – a particularly nice property with bagging. In RF, trees often
stop growing only very lately, a typical stopping criterion checks that only a few
number of training samples remains on a leaf or on a split.
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Random Forest. We recap the main ingredients in Random Forest as presented
in Breiman [2001] in the following.

• A bootstrapped sample of the training dataset is generated for each tree:
each time, n samples are uniformly chosen with replacement from the training
dataset {(x1, y1), . . . , (xn, yn)}.

• Trees are constructed in parallel, and are fully grown until they meet a stop-
ping criterion. With no tree pruning, each cell usually contains few data
points.

• The randomness of the partition choice comes from the bootstrap and also
from the features sub-sampling.

Since its introduction, Random Forest is one of the most widely used super-
vised learning algorithms, in both classification and regression tasks. It combines
good predictive performances, weak training and inference cost while being paral-
lel computation friendly, very few number of hyperparameters to tune, and at the
same time enjoys some interpretability. Some development about Random Forest
methodology include extremely randomized trees [Geurts et al., 2006], variable im-
portance [Louppe et al., 2013], pruning method for ensemble [Ren et al., 2015], reg-
ularization mechanism with depth limitation in Random Forest [Zhou and Mentch,
2021], to cite few of them.

1.3.2 Aggregation algorithms

The exponential weight aggregation algorithm and the histogram strategy are the
two principal novelties that WildWood introduce comparing to Random Forest.

Exponential weights algorithms

In the classical online learning literature such as Cesa-Bianchi and Lugosi [2006],
the exponential weights aggregation is introduced as a strategy for prediction of
deterministic individual sequences with expert advices. Formally, let Θ be the
measurable space of the parameters of estimators, ŷθ,t the predictor related to the
parameter θ at time t, and π a probability measure on Θ named prior. In the online
learning setting, the exponential weight aggregation algorithm proposes to use the
aggregator, at time t,

ŷt :=
∫

Θ
ŷθ,tvt(dθ) where dvt

dπ (θ) := e−ηLθ,t−1∫
Θ e
−ηLθ′,t−1π(dθ′)

with Lθ,t denoting the loss of the estimator ŷθ,t related to θ at time t, evaluated on
all data until time t in hindsight. This predictor is largely studied in Cesa-Bianchi
and Lugosi [2006]. For example, with exp-concave loss function, uniform prior π,
and discrete and finite-numbered parameters set Θ, running exponential weights
algorithm guarantees a regret that is logarithmic in the size of Θ.

The same spirit can be translated into the general supervised learning setting.
Denote f̂θ the predictor related to the parameter θ, the exponential weight aggre-
gation algorithm uses the aggregator

f̂(·) :=
∫

Θ
f̂θ(·)v(dθ) where dv

dπ (θ) := e−ηLθ∫
Θ e
−ηLθ′π(dθ′)
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with Lθ the loss of the estimator f̂θ, evaluated on all the training data. In regression
and squared loss setting, a study [Dalalyan and Tsybakov, 2007] of exponential
weights aggregation obtained sharp PAC-Bayesian risk bounds.

When it comes to the aggregation of subtrees of a tree, we need to consider
particular forms of prior π over the tree structure. Context tree weighting [Catoni,
2004] is indeed useful in designing such aggregations efficiently.

Popular gradient boosting algorithms

In the family of boosting algorithms, extreme gradient boosting algorithms are pow-
erful and often popular in data science challenges. Some successful examples are
XGBoost [Chen and Guestrin, 2016] which provides a popular scalable tree boosting
system widely adopted in industry, LightGBM [Ke et al., 2017] which introduces
the “histogram strategy” for faster split finding, together with clever down-sampling
and features grouping algorithms in order to achieve high performance in reduced
computation times, and CatBoost [Prokhorenkova et al., 2017] which pays partic-
ular attention to categorical features using target encoding, while addressing the
potential bias issues associated to such an encoding.

1.3.3 Contribution: WildWood, a new random forest algorithm

On the one hand, as a bagging algorithm, RF builds each tree based on bootstrapped
training samples, using out-of-bag (otb) samples only for computing scores. On the
other hand, as far as we know, there is no efficient implementation of Random Forest
algorithm that implements histogram strategy and has native support for categor-
ical features. In the work presented in Chapter 4, we propose WildWood (WW),
which keeps all ingredients of RF including bootstrap, fully grown trees, features
sub-sampling, similar tree growing procedure, with an improved tree predictor and
efficient computations implemented in Python.

Improving the tree predictor by the subtrees aggregation with exponen-
tial weights

Consider a fully grown tree T . Recall that in standard RF, the tree predictor
corresponding to T writes f̂(x) = ŷCv(x) for any x ∈ X , where C(x) is the cell
containing x associated to leaf v: this is to find the smallest cell containing x, and
outputs the prediction of this cell. In WW, we improve that tree predictor by the
following mechanism: as the predictor for T , WW uses

f̂(·) =
∑
T⊂T π(T )e−ηLT ŷT (·)∑

T⊂T π(T )e−ηLT with π(T ) = 2−‖T‖, (1.4)

where the sum is over all subtrees T of T rooted at root, η > 0 is temperature
parameter, ‖T‖ denotes the number of nodes in T minus its number of leaves that
are also leaves of T , LT is the cumulative loss of the prediction of subtree T over
otb samples, i.e. LT := ∑

i∈Iotb
`(ŷT (xi), yi), and ŷT is prediction of subtree T in its

classical way. The prediction function (1.4) can be understood as an aggregation
of the predictions ŷT (·) of all subtrees T , weighted by their performances on otb
samples together with prior π(T ) = 2−‖T‖; this is indeed a non-greedy way to prune
trees: the weights depend not only on the quality of one single split but also on the
performance of each subsequent splits.
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Input data

Tree #1 Tree #2 Tree #3 Tree #4 Tree #5 Tree #6 Tree #7 Tree #8 Tree #9 Tree #10

aggregation

Forest

No aggregation

Figure 1.3 – WW decision functions illustrated on a toy dataset (left) with subtrees aggre-
gation (top) and without it (bottom). Subtrees aggregation improves trees predictions, as
illustrated by smoother decision functions in the top compared with the bottom, improving
overall predictions of the forest (last column).

Furthermore, the following Theorem gives a theoretical guarantee over otb sam-
ples, for subtree aggregation, under an assumption on exp-concavity of the loss func-
tion. This Theorem states that the predictor given by (1.4) is able to perform almost
as well as the best oracle subtree T ⊆ T on otb samples, with an O(‖T‖/notb) rate
which is optimal for model-selection oracle inequalities [Tsybakov, 2003]; in con-
trast, finding an oracle argminT∈T

∑
i∈Iotb

`(f̂(xi), yi) is computationally infeasible,
which requires trying out all subtrees.

Theorem (Oracle inequality, Theorem 4.2 restated). Assume that the loss function
` is η-exp-concave. Then, the prediction function f̂ given by (1.4) satisfies the oracle
inequality

1
notb

∑
i∈Iotb

`(f̂(xi), yi) 6 inf
T⊂T

{ 1
notb

∑
i∈Iotb

`(ŷT (xi), yi) + C‖T‖
η(notb + 1)

}
,

where the infimum is taken over all subtrees T ⊂ T rooted at root, and C = log 2.

As a consequence, we proved that the predictor (1.4) given by subtree aggre-
gation, is almost as good as the best of any pruning of the same tree, i.e. any
predictor that is constant on its leaves, see Corollary 4.3 for classification tasks
with the log-loss, and Corollary 4.4 for regression tasks with the least-square loss.

Efficient implementation of WildWood

A naive computation of prediction function (1.4) would involve summing over all
subtrees, the computation cost would be exponential in the number of nodes, which
is infeasible, WW computes (1.4) exactly and efficiently thanks to context tree
weighting, as stated in the following Theorem.

Theorem (Theorem 4.1 simplified). The prediction function (1.4) can be computed
recursively along the path of x in T , with a computational cost in the same order
with that of a standard RF.

A consequence of this Theorem is an efficient computation of f̂(x), exploiting
the fact that trees in WW are grown in a depth-first fashion. Computing f̂(x)
indeed only increases by a factor 2 the computational complexity of a standard RF.

Besides this efficient computation of subtree aggregation, WW natively supports
categorical features and implements a histogram strategy, to accelerate split finding.
Our implementation of WildWood is available at the GitHub repository https:
//github.com/pyensemble/wildwood.
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We conducted extensive experiments assessing the predictive performances and
running times of our implementation of WildWood, see Tables 4.1 and 4.2 in Chap-
ter 4 of this manuscript for detailed experiments settings and results. All experi-
ments can be reproduced using Python scripts on the same repository. Overall, as an
improved Random Forest algorithm, WildWood showed competitive performance in
terms of predictive power and running time, compared to standard Random Forest
and extreme gradient boosting algorithms.

1.4 Online logistic regression: towards an efficient al-
gorithm with better regret guarantee

In the previous section, we consider the batch supervised learning, where data are
a set of observations {(x1, y1), . . . , (xn, yn)} obtained at once. Now in the work
presented in Chapter 5, we move to the online learning setting, where data are
revealed sequentially. In such a setting, in general, we do not make any assumption
on the data distribution, and we look for some algorithms with a performance
guarantee that is valid for any individual sequence (xt, yt)t. Some classical references
include Cesa-Bianchi and Lugosi [2006] as well as Hazan [2019]; Orabona [2019].

1.4.1 Online learning: general principles

Let us start by providing some general background on online learning. Denote Ŷ the
space of predictions and Y the space of labels. Given a loss function ` : Ŷ ×Y → R,
the objective of online learning is to produce some step-by-step predictions for
observations y1, y2, . . . ∈ Y that are accurate in the sense of the loss function.

More precisely, we formulate the setting of online learning as a game between
an agent (who produces predictions) and an environment (which generates ground-
truths). At each time step t = 1, 2, . . .,

• the agent chooses a prediction ŷt, based on all previous observations St−1 =
(y1, . . . , yt−1);

• the environment reveals the actual label yt;

• the agent suffers the loss `(ŷt, yt) at time t.
A learning algorithm A, or a strategy, is a function of all previous observations

that returns the prediction at time t, i.e. following A, the agent predicts ŷt =
A(St−1) at each time t.

The objective of the agent is to produce predictions (ŷt)t that minimize the
cumulative loss ∑n

t=1 `(ŷt, yt), where the number of total rounds n might or might
not be known in advance. However, since we do not make any assumption on
the distribution of (yt)t, the cumulative loss can be big or small according to the
“difficulty” of the observations (e.g. the environment may choose adversarially yt
with the knowledge of the agent’s prediction ŷt). To take this fact into account, we
introduce the notion of regret to effectively evaluate the quality of the successive
predictions (ŷt)t, or the quality of an algorithm A. Let f ∈ Ŷ be a predictor, the
regret of successively playing (ŷt)t compared to f , is the excess cumulative loss
versus using f as the single fixed predictor in hindsight,

Regretn(f) :=
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(f, yt)
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where n stands for the number of total rounds, or the time-horizon. Consider a
subclass F ⊆ Ŷ of predictors, the regret of predictions (ŷt)t relative to F is defined
by the excess cumulative loss compared to the best predictor f ∈ F as the single
fixed predictor in hindsight, namely

Regretn :=
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f, yt). (1.5)

In this case F is called comparison class. The objective of most of the studies in
online learning [Cesa-Bianchi and Lugosi, 2006; Hazan, 2019; Orabona, 2019] is to
obtain guarantees on regret that is valid for any individual sequence (y1, . . . , yn).
Therefore, we are usually interested in upper-bounds on the worst case regret of an
algorithm A, i.e. upper-bounds on

Regretn =
n∑
t=1

`(A(St−1), yt)− inf
f∈F

n∑
t=1

`(f, yt).

The exponential weight aggregation, as mentioned in Section 1.3.2, is a fundamental
strategy of online learning.

Supervised online learning

The setting of supervised online learning is slightly different to the general setting
of online learning: at time t, features xt ∈ X are revealed, then the agent predicts
ŷt with the knowledge of xt. Formally, at each time step t = 1, 2, . . .,

• the environment reveals the features xt ∈ X ;

• the agent chooses a prediction ŷt, based on all previous observations St−1 =
((x1, y1), . . . , (xt−1, yt−1)) and xt;

• the environment reveals the actual label yt;

• the agent suffers the loss `(ŷt, yt).
Under the setting of supervised online learning, predictors are functions of the

features f : X → Ŷ, xt 7→ f(xt) = ŷt. The inputs to a learning algorithm A include
all the previous observations as well as the features of time t, i.e. the agent predicts
ŷt = A(St−1, xt). If the predictor returned by the learning algorithm xt 7→ A(St, xt)
belongs to the comparison class F , we say that the algorithm is proper ; otherwise,
the algorithm is improper. Classical online learning methods often focus on pre-
dictors of the form xt 7→ A(St−1)(xt), e.g. in the OCO setting described in the
next paragraph: they are usually proper algorithms. There are similar notions in
statistical learning theory [Bousquet et al., 2003; Shalev-Shwartz and Ben-David,
2014] for proper (or plug-in estimator, when the estimator takes value inside the
comparison class) and improper (when the estimator is not restricted to the com-
parison class) algorithm. Let us conclude this remark on the proper and improper
algorithms by pointing out that, in the case where an algorithm A effectively uses
the features xt to build the predictor f at time t, A is necessarily improper.

Consider the parametrized comparison class F = {fθ : X → Ŷ, θ ∈ Θ} where
Θ is the space of the comparison parameter θ. Then, the regret of an algorithm A
relative to F writes

Regretn :=
n∑
t=1

`(A(St−1, xt), yt)− inf
θ∈Θ

n∑
t=1

`(fθ(xt), yt).
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Online convex optimization (OCO)

Assume that loss function ` : Ŷ × Y → R is convex and differentiable, i.e. for any
y ∈ Y, the function ŷ 7→ `(ŷ, y) is convex and differentiable. We follow the general
setting of online learning. It is practical to introduce the notation `t to denote the
loss function induced by the observation yt at time t, i.e. `t : ŷ 7→ `(ŷ, yt). Then,
for any ŷ ∈ Ŷ,

`t(ŷt)− `t(ŷ) 6 〈∇`t(ŷt), ŷt − ŷ〉
because of its convexity. Hence, denoting ht := ∇`t(ŷt), we can write an upper-
bound of the regret of the predictions (ŷt) as the regret produced by the linear
functions 〈ht, ·〉. Namely,

Regretn =
n∑
t=1

`(ŷt, yt)− inf
ŷ∈Ŷ

n∑
t=1

`(ŷ, yt) 6
n∑
t=1
〈ht, ŷt〉 − inf

ŷ∈Ŷ

n∑
t=1
〈ht, ŷ〉 .

Therefore, we use the convexity of the loss function to reduce the problem into
that of minimizing the linear regret. Although this reduction might not always be
optimal, the use of convexity offers a practical starting point to design OCO [Hazan,
2019; Orabona, 2019] algorithms, usually efficient and proper.

Online-to-batch conversions

We present some notions in the batch learning, in particular their similarities and
relationship with the online setting. Let π be a probability measure on Y, the
quality of a predictor ŷ ∈ Ŷ is assessed by the expected loss, or its risk R(ŷ) :=
EY∼π[`(ŷ, Y )]. The excess risk of a predictor ŷ ∈ Ŷ related to a comparison class
F ⊆ Ŷ is the difference between the risk induced by ŷ and that of the best predictor
f ∈ F , namely

E(ŷ) := R(ŷ)− inf
f∈F

R(f).

We can see that the notion of excess risk in batch learning is analogous to the
notion of regret (Equation (1.5)) in the online setting. Under i.i.d. assumption for
data and with a convex loss function, an upper-bound on the regret of an online
algorithm entails an upper-bound on the expected excess risk, using the average
predictor, as explained by the following Proposition.

Proposition 1.1 (Online-to-batch conversion, Cesa-Bianchi et al. [2004]). Assume
that Ŷ is convex and that ŷ 7→ `(ŷ, y) is convex for any y ∈ Y. Let Ŷ1, . . . , Ŷn be
predictors returned by an online algorithm, such that Ŷt depends on the sequence
St−1 = (Y1, . . . , Yt−1). Consider the average predictor Ȳn defined by

Ȳn = 1
n

n∑
t=1

Ŷt.

Hence, Ȳn only depends on (Y1, . . . , Yn−1). Let π be a probability measure on Y, and
assume that Y1, . . . , Yn+1 are i.i.d. random variables following π. Denote Regretn
the regret (Equation 1.5) of the predictions (Ŷ1, . . . , Ŷn) against the comparison class
F , on the sequence (Y1, . . . , Yn). Then

E[R(Ȳn)]− inf
f∈F

R(f) 6 1
n
E [Regretn] , (1.6)

where the expectations are taken with respect to the joint distribution of (Y1, · · · , Yn).
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Proof. For any time t = 1, . . . , n, since Ŷt only depends on (Y1, . . . , Yt−1) and is
independent of Yt,

E[R(Ŷt)] = E
[
EYt∼π[`(Ŷt, Yt)] | Ŷt

]
= E[`(Ŷt, Yt)]

where the expectations are taken with respect to the joint distribution of (Y1, · · · , Yt).
Since the loss function ` is convex, the risk R is convex. Then, for any f ∈ F ,

E[R(Ȳn)]−R(f) 6 1
n

n∑
t=1

(
E[R(Ŷt)]−R(f)

)
= 1
n
E
[
n∑
t=1

`(Ŷt, Yt)− `(f, Yt)
]
6

E [Regretn]
n

where the expectations are also taken with respect to the joint distribution of
(Y1, · · · , Yn); the first inequality uses the convexity of R, and the last inequal-
ity uses the definition of the regret (Equation (1.5)) on the sequence (Y1, . . . , Yn).
Then we obtain the Equation (1.6) by taking the supremum over f ∈ F .

Proposition 1.1 gives a general procedure using the average predictor to convert
an online algorithm into a batch algorithm, with guaranteed excess risk in expec-
tation; the same average predictor is also showed with generalization ability with
big probability, see for example Cesa-Bianchi et al. [2004]. Other forms of online-
to-batch conversion are also possible, for example a non-uniform average predictor
was reported in Zhang [2004].

Besides, we remark that in Proposition 1.1, we can get rid of the convexity
assumption. In that case, instead of taking the average predictor, we choose Ȳn = Ŷτ
with τ uniform drawn from {1, . . . , n}, and it yields the same excess risk guarantee
in expectation.

1.4.2 Online logistic regression, related works

Online binary logistic regression falls into the setting of supervised online learning,
with X = Rd, Y = {−1,+1}, and F corresponding to the logistic models {fθ : θ ∈
Rd}, such that

p(1 | x) = 1− p(−1 | x) = fθ(x) = σ(〈θ, x〉)

for any x, θ ∈ Rd, where σ denotes the sigmoid function σ(u) := eu/(1 + eu). The
loss function for this problem is given by

`(〈θ, x〉 , y) = − log σ(y 〈θ, x〉) = −1y=1 log σ(〈θ, x〉)− 1y=−1 log σ(−〈θ, x〉).

Usually, we study online binary logistic regression under an assumption on the
bounded features ‖xt‖ 6 R and bounded comparison class F = {x 7→ 〈θ, x〉 , ‖θ‖ 6
B}, with some R,B > 0.

As an instance of online convex optimization, gradient methods such as Online
Gradient Descent (OGD) [Zinkevich, 2003] and Online Newton Steps (ONS) [Hazan
et al., 2007] apply for online logistic regression. However, under the proper setting
and by constructing adversary examples, Hazan et al. [2014] showed that in partic-
ular, any O(B logn) regret is impossible for proper algorithms.

However, better regret guarantees are possible with improper algorithms. The
following studies indeed moved on to some improper Bayesian and non-Bayesian
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algorithms. Bayesian improper method Foster et al. [2018] enjoys an optimal regret
guarantee but suffers from its computational complexity. Non-Bayesian improper
method AIOLI [Jézéquel et al., 2020] is built upon a new quadratic approxima-
tion of the logistic regression and a regularization by samples, coming with an
extra factor BR in its regret guarantee but with efficient computations. Recent
works GAF [Jézéquel et al., 2021] and FOLKLORE [Agarwal et al., 2021] both ex-
tend the quadratic approximation first introduced in AIOLI [Jézéquel et al., 2020]
into the multi-class case, respectively propose a Bayesian improper algorithm and
a non-Bayesian improper algorithm for multi-class logistic regression, with regret
guarantee similar to the AIOLI one. On the other hand, in the batch setting (in
particular batch logistic regression), Mourtada and Gaïffas [2019] introduces a min-
max estimator. This improper algorithm achieves an excess risk guaranteed in the
optimal order.

A detailed literature review is proposed in Chapter 5 of the manuscript. Let us
summarize here in Table 1.2 the regret upper-bounds and the computational costs
of these algorithms for online binary logistic regression.

Table 1.2 – Regret upper-bounds and computational costs in O(·) of several algorithms
for online binary logistic regression: OGD [Zinkevich, 2003], ONS [Hazan et al., 2007],
Foster [Foster et al., 2018], GAF [Jézéquel et al., 2021], AIOLI [Jézéquel et al., 2020],
FOLKLORE [Agarwal et al., 2021]. AOSMP stands for Approximated One-Step Minmax
Predictor (Algorithm 2), CGD stands for the computational cost of the gradient descent for
finding Ly?t . Algorithms with * also handle the multi-class case.

Algorithm Type Regret upper-bound Computational cost
OGD Proper BR

√
n nd

ONS Proper deBR log(n) nd2

Foster Improper, Bayesian d log(BRn) B6n12(Bn+ d)12

GAF* Improper, Bayesian dBR log(n) + dB2 nd2 + n4

AIOLI Improper, non-Bayesian dBR log(BRn) nd2 + nBR log(n)
FOLKLORE* Improper, non-Bayesian dBR log(n) nd2 + nBR log(n)

AOSMP Improper, non-Bayesian dBR log(n) +B2R2 nd2 + nCGD

1.4.3 Contribution: study of some non-Bayesian improper algo-
rithms

The starting point of the work presented in Chapter 5 is the following question: with
possibly some adaptation, could an online version of SMP [Mourtada and Gaïffas,
2019] achieve a regret guarantee comparable to SMP’s excess risk? We present two
candidate algorithms, OSMP and AOSMP, and their regret analysis.

Let us start by considering the λ-ridge-penalized regret until time t for online
logistic regression, which writes,

t∑
s=1

`(ŷs, ys)− inf
θ∈Θ

(
t∑

s=1
`(θ>xs, ys) + λ ‖θ‖2

)
.

We introduce the One-Step Minmax Predictor (OSMP), taking “best possible”
choice of prediction ŷt against “the worst possible” ground-truth value of yt ∈
{−1,+1} and the adversary parameter θ, measure by the λ-ridge-penalized regret
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above. Namely,

ŷt = argmin
ŷ∈R

sup
yt∈{−1,1}

sup
θ∈Rd

{
`(ŷ, yt) + L̂t−1 −

(
`(θ>xt, yt) + Lλ,t−1(θ)

)}
,

with L̂t−1 := ∑t−1
s=1 `(ŷs, ys), and Lλ,t−1(θ) := ∑t−1

s=1 `(θ>xs, ys) + λ‖θ‖2. We show
that equivalently (Lemma 5.4), OSMP predicts

ŷt = −L+1?
λ,t + L−1?

λ,t

with Ly?λ,t := infθ∈Rd
{
`(θ>xt, y) + Lλ,t−1(θ)

}
for y ∈ {−1,+1}. This gives the

explicit Algorithm 1 for the computation of OSMP. On the regret analysis of OSMP,
we first remark that

Regretn(θ) =
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(θ>xt, yt) 6 λ ‖θ‖2 +
n∑
t=1

r̂t,

where we denote r̂t := `(ŷt, yt) − L?λ,t + L?λ,t−1 the instant regret of time t. We
deduce the following upper-bound for the instant regret, whose proof relies on the
generalized R-self-concordance [Bach, 2010] of the function Lλ,t.

Algorithm 1 One-Step Minmax Predictor (OSMP) description.
1: Inputs: Parameters λ > 0, n, d > 1 constants B,R > 0
2: Initialize: Lλ,0(θ) = λ ‖θ‖2
3: for t = 1, . . . , n do
4: Receive xt
5: Compute Ly?t ← infθ∈Rd

{
`(θ>xt, y) + Lλ,t−1(θ)

}
for y = −1 and y = +1

6: Predict ŷt ← −L+1?
t + L−1?

t

7: Receive yt
8: Update function Lλ,t(θ) = Lλ,t−1(θ) + `(θ>x, yt)
9: end for

Proposition (Proposition 5.9). Denote θt := argminθ∈Rd Lλ,t(θ), assume ‖xt‖ 6 R
for some R > 0. We run OSMP (Algorithm 1) with λ > R2. Then the instant regret
as defined above is upper-bounded,

r̂t 6 e · σ′(〈θt, xt〉) · ‖xt‖2(∇2Lλ,t(θt))−1 .

However, this Proposition is as far as goes our analysis of OSMP. In particular,
the value of Hessian ∇2Lλ,t(θt) depends on the point θt where it is evaluated, and
we are not aware of a way to control such Hessian matrix leading to a regret upper-
bound which is logarithmic in n and without an exponential factor in BR, see
Section 5.5.3 for more details.

To get around this difficulty, we introduce the following Approximated One-Step
Minmax Predictor (AOSMP), defined by

ŷt = argmin
ŷ∈R

sup
yt∈{−1,+1}

sup
θ∈Rd

{
L̂t−1 + `(ŷ, yt)−

(
`(θ>xt, yt) + L̃λ,t−1(θ)

)}
with L̃λ,t−1(θ) := ∑t−1

s=1
˜̀(θ>xs, ys)+λ‖θ‖2. This formulation is in the same minmax

spirit with OSMP. The difference is that in AOSMP, we replace the evaluation
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function on the adversary parameter Lt−1 by its quadratic surrogate L̃t−1. We rely
on the quadratic approximation of the logistic function first introduced in Jézéquel
et al. [2020, Lemma 5], namely

˜̀
t(θ) := `t(θ̃t) + g>t (θ − θ̃t) + 1

2ηt
(
x>t (θ − θ̃t)

)2
, (1.7)

with gt := ∇`t(θ̃t), ηt := σ′(〈θ̃t, xt〉)/(1 +BR) and we choose

θ̃t = argmin
θ∈Rd

L̃ytλ,t(θ) with L̃yλ,t(θ) := `(θ>xt, y) + L̃λ,t−1(θ).

For the same reasons for OSMP, AOSMP predicts

ŷt = −L̃+1?
λ,t + L̃−1?

λ,t

with L̃y?λ,t := infθ∈Rd
{
`(θ>xt, y) + L̃λ,t−1(θ)

}
for y ∈ {−1,+1}, and that gives Al-

gorithm 2 for the computation of AOSMP. Then, we are able to apply the classical
techniques with the quadratic forms to upper-bound the sum of the pseudo instant
regrets, to obtain the following Theorem on the regret of AOSMP.

Algorithm 2 Approximated One-Step Minmax Predictor (AOSMP) description.
1: Inputs: Parameters λ > 0, n, d > 1, constants B,R > 0
2: Initialize: Function L̃λ,0(θ) = λ ‖θ‖2
3: for t = 1, . . . , n do
4: Receive xt
5: Compute L̃y?t ← infθ∈Rd

{
`(θ>xt, y) + L̃λ,t−1(θ)

}
for y = −1 and y = +1

6: Predict ŷt ← −L̃+1?
t + L̃−1?

t

7: Receive yt
8: Compute θ̃t ← argminθ∈Rd

{
`(θ>xt, yt) + L̃λ,t−1(θ)

}
, and function ˜̀

t(θ) as
specified in Equation (1.7)

9: Update function L̃λ,t(θ) = L̃λ,t−1(θ) + ˜̀
t(θ)

10: end for

Theorem (Theorem 5.19). Let R,B > 0 and d, n > 1. Let (x1, y1), . . . , (xn, yn) ∈
[−R,R]d × {−1,+1} be an arbitrary sequence of observations. We run AOSMP
(Algorithm 2) with λ > R2. Then its regret against any θ ∈ B(Rd, B) satisfies the
following upper-bound,

Regretn(θ) 6 e · (1 +BR)d log
(

1 + nR2

8d(1 +BR)λ

)
+ λ ‖θ‖2 .

In particular, choosing λ = R2 yields

Regretn 6 e · (1 +BR)d log
(

1 + n

8d(1 +BR)

)
+B2R2.

We obtain for AOSMP a regret upper-bound similar to the one of AIOLI [Jézéquel
et al., 2020], as we use the same quadratic approximation (1.7).

Overall, in this work, we propose and analyze two SMP-inspired [Mourtada
and Gaïffas, 2019] algorithms for online logistic regression: for OSMP, we only

31



CHAPTER 1. INTRODUCTION

found an upper-bound for instant regret r̂t 6 e · σ′(〈θt, xt〉) · ‖xt‖2(∇2Lλ,t(θt))−1 ; for
AOSMP, we proved a regret upper-bound in a similar order with the state-of-the-
art algorithm [Jézéquel et al., 2020] for binary online logistic regression to the best
of our knowledge. The question of an efficient algorithm with better regret upper-
bound for online logistic regression remains open.
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Chapter 2

ZiMM: a deep learning model
for long term and blurry
relapses with non-clinical claims
data 1

“ 吾生也有涯，而知也无涯。
There is a limit to our life, but to knowledge there is
no limit. ”

Zhuang Zhou (translated by James Legge)
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CHAPTER 2. ZIMM: DEEP LEARNING FOR CLAIMS DATA

Abstract

This work considers the problems of modeling and predicting a long-term
and “blurry” relapse that occurs after a medical procedure, such as a surgery.
We do not consider a short-term complication related to the act itself, but
a long-term relapse that clinicians cannot explain easily, since it depends on
unknown sets or sequences of past events that occurred before the act. The
relapse is observed only indirectly, in a “blurry” fashion, through longitudinal
prescriptions of drugs over a long period of time after the medical act. We in-
troduce a new model, called ZiMM (Zero-inflated Mixture of Multinomial dis-
tributions) in order to capture long-term and blurry relapses. On top of it, we
build an end-to-end deep-learning architecture called ZiMM Encoder-Decoder
(ZiMM ED) that can learn from the complex, irregular, highly heterogeneous
and sparse patterns of health events that are observed through a claims-only
database. ZiMM ED is applied on a “non-clinical” claims database, that
contains only timestamped reimbursement codes for drug purchases, medical
procedures and hospital diagnoses, the only available clinical feature being the
age of the patient. This setting is more challenging than a setting where bed-
side clinical signals are available. Our motivation for using such a non-clinical
claims database is its exhaustivity population-wise, compared to clinical elec-
tronic health records coming from a single or a small set of hospitals. Indeed,
we consider a dataset containing the claims of almost all French citizens who
had surgery for prostatic problems, with a history between 1.5 and 5 years.
We consider a long-term (18 months) relapse (urination problems still occur
despite surgery), which is blurry since it is observed only through the reim-
bursement of a specific set of drugs for urination problems. Our experiments
show that ZiMM ED improves several baselines, including non-deep learning
and deep-learning approaches, and that it allows working on such a dataset
with minimal preprocessing work.

2.1 Introduction

The increasing volume of Electronic Health Records (EHR) systems of national
medical organizations in recent years allows to capture data from millions of indi-
viduals over many years. Each individual’s EHR can link data from many sources
and hence contain “concepts” such as diagnoses, interventions, lab tests, clinical
narratives, and more. This provides great opportunities for data scientists to col-
laborate on different aspects of healthcare research by applying advanced analytics
to these EHR clinical data [Rajkomar et al., 2018].. There are several challenges
in processing EHR data [Cheng et al., 2016]: data quality, high-dimensionality,
temporality which refers to the sequential nature of clinical events, sparsity in both
medical codes representation and in timestamp representation, irregularly timed ob-
servations, biases such as systematic errors in data collection, and mixed data types
with missing data. Representation learning can overcome these challenges [Rajko-
mar et al., 2018] and the choice of data representation or feature representation
plays a significant role in the success of this approach.
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2.1.1 Related works

Recently, much work has been done on developing compact and functional represen-
tations of medical records, including the use of deep learning over EHR data [Bajor
et al., 2018; Shickel et al., 2018]. A notable attempt is stacked denoising autoen-
coders [Miotto et al., 2016]. Denoising autoencoders are also used in [Beaulieu-
Jones and Greene, 2016] to develop patient representation from various binary
clinical descriptors on synthetic data. Sums of word-level skip-gram embedded
vectors of clinical codes are used in Choi et al. [2016d] to create full-record repre-
sentations. Word-level semantic embeddings for diagnosis and intervention codes
are constructed in Pham et al. [2017], using pooling and concatenation to aggregate
embeddings into a vector representing a single admission, while Nguyen et al. [2017]
uses word-level embedding as preprocessing for a CNN architecture.

Only a few studies were made based on claims data due to its complexity and
rare availability. Choi et al. learned distributed representations of medical codes
(e.g. diagnoses, medications, procedures) from electronic health records (EHRs)
and claims data using Skip-gram and applied them to predict future clinical codes
and risk groups Choi et al. [2016b]. Cui2vec is a recent study in learning clinical con-
cept embeddings [Beam et al., 2018], which applied word2vec [Mikolov et al., 2013]
and Glove [Pennington et al., 2014] on multiple medical resources such as struc-
tured claims data, biomedical journal articles and unstructured clinical notes. Xiao
et al. [2018] proposed learning a distributional representation of clinical concepts
considering temporal dependencies along the longitudinal sequence of a patient’s
records based on claims data.

Other efforts have aimed at encoding temporal aspects of EHR data for pre-
dictive tasks. In Choi et al. [2016a], time-stamped events are used as inputs to a
particular type of RNNs to predict future disease diagnosis, while a graph-based
attention model is used in Choi et al. [2019] to learn concept representations. An-
other interesting recent effort is Rajkomar et al. [2018], which maps raw EHR data to
the FHIR format (Fast Healthcare Interoperability Resources [Bender and Sartipi,
2013]) to encode EHR information for several different sequence-oriented models.

RETAIN [Choi et al., 2016c] and GRAM [Choi et al., 2017] are two state-of-
the-art models using RNNs for predicting future diagnoses. However, they cannot
handle long sequences effectively. LSTM or bidirectional RNNs [Ma et al., 2017]
can be trained using all available input information in the past and future, and
have been used to alleviate the effect of the long sequence problem and improve
the predictive performance. The work of [Lipton et al., 2016] has been the first to
successfully use LSTM to predict patients diagnosis, for multi-label classification.
BEHRT [Li et al., 2019] is one of the most recent researches that provides the field
with an accurate predictive model for the prediction of next diseases based on the
transformer-based architecture in NLP [Devlin et al., 2018].

Although fixed timesteps are perfectly suitable for many RNN applications,
EHRs often contain event-driven and asynchronously sampled samples, in particu-
lar for the application considered in the present paper. Recent works try to cap-
ture time irregularity using recurrent neural networks. Phased LSTM [Neil et al.,
2016] tries to model the time information by adding a time gate to LSTM, which
controls the update of the cell state, the hidden state and thus the final output.
Another attempt is Zhu et al. [2017] where time gates are added to the LSTM in
order to model time intervals and specifically better capture both of short-term
and long-term sequential events. Time-aware LSTM [Baytas et al., 2017] addresses
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time irregularity between two events in an LSTM architecture by decomposing the
memory of the previous timesteps into short-term memory and long-term mem-
ory. Let us point out that, however, most of the works on EHR data cited above
either ignores subsequence-level irregularity by partitioning the data into regular
time windows and by aggregating the data within each window or handles this ir-
regularity by simply adding the time-span as one coordinate of the features vector,
see Choi et al. [2016a] for instance.

2.1.2 Aim of this chapter and contributions

This chapter aims at the construction of a predictive model for long-term and
“blurry” relapses that occur after a medical act. We do not consider a short-term
complication related to the act itself, but a long-term relapse which is observed only
indirectly. In the example considered here, the medical act is a precise surgery, and
the relapse is observed through longitudinal prescriptions of a specific set of drugs
for urinary problems, over a period of 18 months after surgery. We use all the data
available in SNIIRAM (French national health insurance information system, a huge
database containing health reimbursements claims of almost all French citizens since
2015, see Section 2.3.1 for details) for patients on which such a surgery has been
performed (TURP surgery, see Section 2.3.2).

The ZiMM model. The first natural idea is to cast this problem as a classifi-
cation problem for “relapse” versus “no relapse” after the medical act. However,
such a naive approach cannot work here. Indeed, the definition of a binary la-
bel would require threshold choices, both about time and dosage: after how many
time and amount of drugs prescribed do we consider that there is a relapse? Such
thresholds might depend on various clinical practices, habits of the patient, and
many other exogenous factors. In this work, we propose to work directly on the
data observed, by using all the “blurry” observations at once to train an end-to-end
architecture. For this purpose, we introduce a new methodological contribution,
namely the ZiMM model (Zero-inflated Multinomial Mixture) which is described in
Section 2.2.1 below.

The ZiMM Encoder-Decoder (ZiMM ED). We introduce an end-to-end
Encoder-Decoder architecture trained with an objective, based on the negative log-
likelihood of the ZiMM model. All available patients’ claims before the medical
act are first encoded into a single embedding vector by the Encoder. This Encoder
combines embedding layers, self-attention layers and recurrent layers to output an
embedding vector of the full patient pathway prior to the medical act. This em-
bedding is used as input to a Decoder which is dedicated to the learning of the
parameters of the ZiMM model. This architecture is described in Sections 2.2.3
to 2.2.5 below.

Specifics of this work. The specificity of our approach lies in several points.
First of all, it is performed on non-clinical EHR data, and we consider long-term
predictions (18 months ahead). Our end-to-end architecture addresses several chal-
lenges, such as variable-size inputs, confounding interactions between medical codes,
long-term predictions. Finally, we do not inject any prior knowledge: the embed-
dings of patient pathways are fully trained in an end-to-end fashion, we do not use
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any strong preprocessing or simplifying aggregations, the data is used almost in its
raw form. We keep the smallest granularity possible both on the codes (we use the
actual medical codes instead of encompassing categories) and on time, namely we
work on the original 1-day time scale.

Organization of the chapter. The ZiMM model is described in Section 2.2.1
while the ZiMM ED architecture is described in Sections 2.2.3 to 2.2.5. Some details
concerning data preprocessing are provided in Section 2.2.2. Section 2.3 provides
results and a comparison with strong baselines, together with some variations of
the architecture to fine-tune the final performance and we conclude in Section 2.4.

2.2 Proposed architecture

The ZiMM ED architecture has three main building blocks: the ZiMM (Zero-
Inflated Multinomial Mixture) model (see Section 2.2.1), an Encoder (see Sec-
tion 2.2.3) and a Decoder (see Section 2.2.4), and is described in Figure 2.1 below.
Given a patient i ∈ {1, . . . , n} (among n patients), with medical act of interest
occurring at time T i, the steps through this architecture are roughly as follows:

• All the medical codes (drugs, diagnosis, medical acts) observed longitudinally
in the life of patient i before T i are embedded, then aggregated in a time
window using a self-attention mechanism. The time distance (in days) to T i
of each day with a non-empty set of codes is embedded as well, and we embed
as well hospital stay durations. This sequence of vectors is then fed to a (or
several) recurrent layers. This corresponds to Steps 1,2 and 3 in Figure 2.1.
This leads to an embedding vector xi ∈ Rd of the full pathway of patient i
prior to T i.

• The vector xi ∈ Rd is concatenated with other static features of the patient,
and used as the input of the Decoder, which is based on several recurrent layers,
in order to produce the parameters of the ZiMM model. This corresponds to
Step 4 in Figure 2.1.

Precise descriptions of all steps are provided below, starting with the ZiMM model,
followed by some details concerning data preprocessing, and the Encoder-Decoder
architecture.

2.2.1 ZiMM: Zero-inflated Multinomial Mixture model

Assume for now that we have an embedding vector xi ∈ Rd that encodes the full
health pathway of patient i ∈ {1, . . . , n} prior to T i. This vector is the output of the
ZiMM-Encoder described in Section 2.2.3 below. Moreover, we observe a vector of
labels yi = [yi,1, . . . , yi,B] ∈ NB, which corresponds to the blurry observation of the
relapse after T i. Here, B corresponds to the number of time intervals considered
after T i and yi,b > 1 is the number of blurry relapses observed in time bucket b,
so that yi,b = 0 means that no blurry relapse is observed in time bucket b. In the
example considered Section 2.3 below, B = 18 corresponds to a 18-months period
and yi,b is the number of drugs (among a set of drugs for urinary problems, see
Section 2.3.3), purchased by patient i in time bucket b.

We introduce ni = ∑B
b=1 yi,b ∈ N, the overall number of blurry relapses of

patient i. Let us point out that a binary classification problem (ni > 0 versus
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Figure 2.1 – Architecture of the ZiMM Encoder-Decoder end-to-end architecture. A detailed
graphical representation of Steps 2-4 is shown in Figure 2.3 below.

ni = 0) may wrongly classify very different situations corresponding to the same
ni. Consider for instance two extreme situations where first, we have ni = 1 with
yi,1 = 1 (and consequently yi,b = 0 for b = 2, . . . , B), and second, we have ni = 1
with yi,B = 1 (and consequently ni,b = 0 for b = 1, . . . , B − 1). The first case can
be due to exogenous factors, such as the patient simply kept buying the drug after
the surgery just out of a pure habit (prescriptions can run for a long period), while
in the second example, there is no doubt that a relapse is occurring.

Therefore, we need to find a way to model the whole vector yi, so that ni is
not fixed and includes zero-inflation, namely a parametrized likelihood for ni = 0.
For that purpose, we introduce the following ZiMM model, where we suppose that
ni ∈ {0, 1, . . . , B} is distributed (conditionally to xi) as

ni ∼ Categorical(π0(xi), π1(xi), . . . , πB(xi)),

which means that

P(ni = k|xi) = πk(xi) for k ∈ {0, . . . , B},

where πb(xi) are such that ∑B
b=0 πb(xi) = 1 and πb(xi) > 0 (coming out of a

softmax activation for instance). These parameters correspond to the categorical
distribution specific to patient i, and are constructed by the ZiMM-Decoder (see
Section 2.2.4 below) from xi. Then, we assume that the distribution of yi con-
ditional to ni = b and xi follows either a Dirac distribution on vector (of size
B) [0, . . . , 0] whenever b = 0, or a multinomial distribution of parameters b and
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pb,1(xi), . . . , pb,B(xi), namely

yi|(xi, ni = b) ∼
{
δ[0,...,0] if b = 0,
Multinomial(b, pb,1(xi), . . . , pb,B(xi)) otherwise,

where pb,1(xi), . . . , pb,B(xi) are the parameters of a multinomial distribution when-
ever ni = b, for each b = 1, . . . , B. Once again, these parameters are specific to
patient i thanks to the embedding vector xi ∈ Rd, and are constructed by the
ZiMM-Decoder. These parameters must satisfy∑B

b′=1 pb,b′(xi) = 1 for b = 1, . . . , B,
and pb,b′(xi) > 0 for any b, b′ = 1, . . . , B, which is easily achieved with a softmax
activation applied row-wise. The distribution of yi conditionally on xi is therefore
given by the following mixture model:

yi|xi ∼ π0(xi)δ[0,...,0] +
B∑
b=1

πb(xi)Multinomial(b, pb,1(xi), . . . , pb,B(xi)).

Zero-inflation corresponds to the case where ni = 0 and has likelihood measured
by π0(xi). The ZiMM model has two sets of parameters that are functions of
the feature vector x, namely {πb(x)}b∈{1,...,B} that parametrizes the distribution of
the total number of blurry relapses and {pb,b′(x)}b,b′∈{1,...,B}2 that parametrizes the
dynamics of these relapses. As explained in Section 2.2.4 below, the dynamics of
{pb,b′(x)}b′∈{1,...,B} for each b are learned by dedicated recurrent layers in ZiMM-
Decoder.

2.2.2 Preprocessing of the data

After a preliminary preprocessing based on our SCALPEL3 library described in Bacry
et al. [2019], the data considered in this paper comes in the form of a table, where
each row represents an event with the patient ID, the type of event (drug, diagnosis
or medical procedure), its corresponding code, the start date and the end date of
the event. Figure 2.2 provides an illustration of the sequence of claims observed for
a single patient.
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Figure 2.2 – Illustration of the sequence of claims observed for a patient. This corresponds
to the output of Step 1 from Figure 2.1. Through claims, we observe three types of events:
drug purchases (blue), medical procedures (red) and diagnosis (yellow) before the medical
act (prostate surgery in the example) that happens at time T i for patient i. All events are
timestamped, and the time delta is a day long. Several events can occur the same day and
some days have no event: events are typically very irregularly sampled. All these events,
observed before T i, are used to learn the embedding vector xi ∈ Rd of patient i. After T i,
we only keep the events corresponding to the blurry relapses considered (drug purchases
among a set of drugs for urinary problems). These blurry relapses are used to build the
label vector yi ∈ NB of patient i.

If an event is related to a hospital stay, the start date is the first day of hos-
pitalization while the end is the exit date from the hospital. Otherwise, the start
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and end dates are the same. The time delta is a day-long, and no aggregation is
performed to keep the data as raw as possible.

Multiple events can occur within the same day, and the precise ordering of such
events does not carry any information. Thus, we shuffle at random within-day
events, to avoid any bias that could occur from the data collection mechanism (a
similar strategy can be found in Choi et al. [2016d]).

All the events observed through claims before T i are used as inputs to the En-
coder described in Section 2.2.3 below. The output of the Encoder is the embedding
vector xi ∈ Rd of patient i. The blurry relapses observed after T i are used to build
the label vector yi ∈ NB of patient i.

2.2.3 The ZiMM Encoder

The ZiMM Encoder corresponds to Steps (2) to (4) in Figure 2.1, a more detailed
illustration is shown in Figure 2.3. Let us provide now details about each step,
following the flow of the data.

Medical codes and timestamps embeddings. The following is applied sepa-
rately for each type of event code (drugs, medical procedures and diagnoses). Codes
are first tokenized, and each unique token is individually mapped to an embedding
vector in RdE which is learned during training, where dE is a hyper-parameter to
be tuned (see Section 2.3.7). We consider only tokens that occur at least 50 times
in the training dataset. For any event occurring at time t 6 T i in the observation
period of patient i, we compute the “time horizon” as T i−t, namely the distance (in
days) between the event and medical act. Moreover, whenever it makes sense, we
compute end− start, the duration of the event, which corresponds to the duration
of an hospital stay defined as the time between hospital admission and discharge.
These two integers (in number of days) are also tokenized and replaced by a learned
embedding vector. This allows the encoder to learn to put more or less emphasis
on events that are close or far from T i, and to exploit the duration of events as a
proxy for severity of medical procedures and diagnoses. The patient age in years
at T i is also similarly bucketized and embedded. The embedding of medical codes
corresponds to Step (2) of both Figures 2.1 and 2.3. In our experiments, the de-
fault model uses dE = 64 for the three types of codes and several regularization
strategies are applied to avoid overfitting: weights decay (`2 regularization with
strength 10−2), multiplicative Gaussian noise, and layer normalization [Ba et al.,
2016]. Since we observed empirically that these embeddings are prone to over-
fitting for the application considered in the paper, a comparison of the different
regularization strategies is provided in Section 2.3.7.

Embeddings aggregation through self-attention. Several events can occur
at the same time (within the same day), so that the number of codes observed within
a day is highly heterogeneous. Moreover, such codes are not likely to contribute
equally to the vector representation of the day, and their order is not informative.
Therefore, we need to perform a trainable aggregation of these codes in order to
produce a representation of the patient history at each timestamp. An approach can
consist of using a hierarchy relationship between different diagnosis and treatment
inside each patient visit [Choi et al., 2019]. However, in the data considered here,
diagnosis codes are not explicit each time there is treatment; in particular, drugs
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Figure 2.3 – A graphical illustration of representation learning of patient pathway in the
ZiMM Encoder: (2) embedding tensors for each type of medical code; (3) aggregation of
embedding vectors through multi-head self-attention inside a time window, where each gray
block corresponds to one day (ti0, ti1, . . .), and T i is the day of the medical act of interest;
(4) concatenation of aggregated embedding vectors with embeddings for time horizon and
hospital length stay.

purchases are almost never related to a diagnosis code (unless they are related
to a hospitalization). Hence, we use a self-attention mechanism [Lin et al., 2019;
Vaswani et al., 2017] using a bag-of-features approach to learn how to combine
embedding vectors within the same day, following previous successful applications
of self-attention for fusing disease embeddings [Luo et al., 2019].

Let C be a set of codes with cardinality |E| (for drugs, medical procedures or
diagnoses) and let EC ∈ RdE×|C| be the corresponding matrix of concatenated em-
bedding vectors. The multi-headed self-attention aggregation mechanism contains
two layers, the first with K heads, each of which is a self-attention function that
generates a probability vector of size |E| from EC :

wk = softmax(α>k tanh(AkEC)), (2.1)

for k = 1, . . . ,K, where αk ∈ R1×dE and Ak ∈ RdE×dE are to be trained and the
second layer outputs a dE-dimensional vector given by

ECµC where µC = softmax(b> tanh(BW )), (2.2)

with W = concatenate(w1, . . . , wk) ∈ RK×|C| and b and B are trainable parame-
ters. This self-attention mechanism is trained and performed separately for each
type of code, as displayed in Step (3) of Figure 2.3. Note that this aggregation
approach is permutation-invariant for codes that occur within the same day. We
use dropout, drop-connect [Wan et al., 2013], Frobenius-norm weight penalization
from [Lin et al., 2019] and weight-decay to regularize this self-attention mechanism.
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Health pathway encoder. At each timestamp, the following embedding vectors
are concatenated:

• Medical code embedding computed by Equations (2.1) and (2.2);

• Time-horizon embedding (see above);

• Duration of the event embedding (see above).

For each patient, this leads to a sequence of fixed-sized embedding vectors that
encode both medical and time information at each (non-empty) timestamp t 6 T i,
as displayed in Step (4) of Figures 2.1 and 2.3. Now, this sequence of vectors is used
as the input of a stack of layers, including recurrent layers (LSTM [Hochreiter and
Schmidhuber, 1997], bi-directional LSTM [Schuster and Paliwal, 1997], GRU [Cho
et al., 2014]) or convolutional layers, in a sequence-to-one network architecture,
since we want to output a single vector xi ∈ Rd that encodes the full pathway
of a patient before T i. The results obtained with different types of layers are
shown in Section 2.3.7 below. We use again dropout on the inputs and on the
recurrent units to prevent overfitting. Finally, the output vector of the encoder is
concatenated with an embedding vector of the age of the patient, leading to the
final vector xi ∈ Rd that encodes the full pathway of patient i before T i. This
vector is the input of the ZiMM Decoder described in the next Section.

2.2.4 The ZiMM Decoder

The decoder uses the input vector xi ∈ Rd of patient i to construct the parameters
of the ZiMM model, and the whole architecture is trained against the negative
log-likelihood of the ZiMM model from Section 2.2.1 computed at the label vector
yi = [yi,1, . . . , yi,B] containing the blurry relapses. The parameters {πb(xi)}b=1...,B
and {pb,b′(xi)}b,b′∈{1,...,B}2 are highly dependent and are time-ordered, so that a
specific architecture is used to model these dependencies. The mixture probabilities
are learned through a fully connected feed-forward layer (FFN) that use as input
xi, namely

π0(xi), . . . , πB(xi) = softmax(FFN(xi)),

and another recurrent layer (RNN) uses as well xi in order to produce hidden states
given by

ht = RNN(ht−1, xi) (2.3)

for t = 1, . . . , B. Then, we use different recurrent layers (RNNb) in parallel for each
value ni = b ∈ {1, . . . , B} using

hbt = RNNb(hbt−1, ht)

for t = 1, . . . , B, since the multinomial distributions vary strongly conditionally on
ni = b. Finally, a softmax activation is applied on hbt along t = 1, . . . , B to produce
the parameters pb,1(xi), . . . , pb,B(xi). Details on the type of layers used and the
tuning of hyperparameters is provided in Section 2.3 below.
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2.2.5 Training

The full ZiMM Encoder-Decoder architecture is trained in an end-to-end fashion
by minimizing the average negative-log likelihood over all patients i = 1, . . . , n:

`i(Θ) = log(π0(xi))1ni=0

+
B∑
b=1

[
log(πb(xi)) + log

( b!
ΠB
b′=1yi,b′ !

)
+

B∑
b′=1

yi,b′ log(pb,b′(xi))
]
1ni=b,

where Θ stands for the concatenation of all the trainable parameters involved in
the layers described in Sections 2.2.3 and 2.2.4. The choices of optimizer, learning
rate schedule and other hyperparameters are described in Section 2.3.

2.3 Application: prediction of post-surgical relapse of
urinary problems

In this section, we apply the ZIMM ED architecture to predict the blurry relapse of
urinary problems after a TURP surgery for patients with benign prostatic hyperpla-
sia (see Section 2.3.2 below) using a cohort constructed from the French SNIIRAM
database (see Section 2.3.1 below). Then, we explain in details the way the la-
bels are built (Section 2.3.3), the different steps involved in the cohort construction
(Section 2.3.4), the evaluation metric and implementation details (Section 2.3.5).
Then, the remaining of this section describes the baselines and a comparison with
ZiMM ED, followed by an ablation study.

2.3.1 SNIIRAM: A non-clinical claims dataset

SNIIRAM (French national health insurance information system) contains health
reimbursements claims of almost all French citizens since 2015 (more than 65 mil-
lion) and has been used for health research on many topics, to cite but a few Atra-
mont et al. [2018]; Fonteneau et al. [2017]; Scailteux et al. [2019]. Since, in France,
most health-cares are at least partially reimbursed by the administration, this
database contains records corresponding to very various information going from
hospital stays to drug purchases in city pharmacies, all coded with different sys-
tems [Tuppin et al., 2017]. Absence of clinical information and “forced” normaliza-
tion makes this data highly complex and heterogeneous. A consequence is that it
requires a lot of domain expertise about the way healthcare is reimbursed in France
in order to prepare it as training data for machine learning algorithms. In this
paper, we exploit medication, procedure and diagnosis codes only. Diagnoses are
primarily coded with ICD-10, while procedures are coded with CCAM, a French
medical classification of clinical procedures. Medications codes use the French phar-
maceutical categories CIP13 [Bezin et al., 2017] that we map to the international
ATC (Anatomical Therapeutic Chemical Classification) classification system.

Let us stress that while this data is extremely rich and almost population-wide
over France, it is not clinical data, but only claims data, clinical information being
only latent in the codes appearing in reimbursement information. No vital bedside
information, lab tests results or natural language notes from clinicians is available.
An important amount of data preprocessing and domain expertise is required for
data extraction, in particular in order to clean existing inaccuracies in codes and
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timestamps. This is achieved through our SCALPEL3 library [Bacry et al., 2019],
which is a separate topic of research that this paper builds upon. Furthermore,
the identification of a disease state (indication, concomitant disease or outcome)
does not rely only on a single source of information but on the convergence of
information from different sources. This might include, for instance, the presence
of a chronic disease registration, hospital diagnoses, tracer drugs, and procedures
or lab tests [Bezin et al., 2017], that are all observed in the data through claims.

We believe that these downsides are counter-balanced by the exhaustive nature
of this data. It is exhaustive both in terms of population (it includes nearly all the
population living in France) and in terms of healthcare events. Indeed, in France,
almost all healthcare spendings are at least partially reimbursed by the government,
so almost each healthcare of each individual is associated to at least one event in the
database. This makes it a very rich and powerful database, with a relatively small
bias, and many works have already proved successful in improving population-level
health [Atramont et al., 2018; Fonteneau et al., 2017; Morel et al., 2019; Scailteux
et al., 2019]. Though most EHR studies are dealing with clinical EHR’s Coorevits
et al. [2013], it is clearly crucial to exploit such claims-only EHR, and we hope that
our work is a first step towards broader use, in healthcare and machine learning
research community, of non-clinical claims datasets.

Let us note that, since 2016, the access to this database, for public interest
research, is possible through the SNDS access pipeline [SNDS, 2019]. It mainly
offers access through the SAS software. An access using classical open source big
data and AI frameworks (e.g. R, Python, Spark) including the SCALPEL3 library
will be possible, by the end of 2020, through the Health Data Hub Hub [2019],
a 80M$-funded national project which aims to be the national unique gateway to
most French health data for operating public interest research (operated by both
public or private entities) on modern infrastructures.

2.3.2 Benign prostatic hyperplasia (BPH)

BPH is a common urological disease that affects aging men all over the world
[Dahm et al., 2017; Silva et al., 2014]. It causes urinary tract obstruction due to the
unregulated growth of the prostate gland, causing lower urinary tract symptoms
(LUTS) [Kim et al., 2016]. The options for management of BPH include watchful
waiting, pharmacotherapy, transurethral resection of the prostate (TURP), and
other minimally invasive surgical treatments (MISTs) and open prostatectomy.
Most studies consider TURP as the gold standard for surgical management of
BPH [Hashim and Abrams, 2015]. Patients suffering from prostatic hyperplasia
regularly take drugs for urination problems. Successful surgery should cure such
problems so that patients should not need to continue their drugs for urination prob-
lems. However, it is often observed that patients retake such drugs after surgery.
In some cases, it merely comes from a habit of taking routine drugs, but in many
cases, it is related to a persisting urination problem [Chung and Woo, 2018; Macey
and Raynor, 2016].

An important problem, from a clinical point of view, is, therefore, to predict
the outcome of such a surgery, on a long-time period following it (18 months is
considered here), to improve the decision making of the clinicians, in particular, to
help decide when surgery should be performed. Use of long-term data after TURP
surgery is very scarce in the literature, with only a few studies available [Cornu
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et al., 2015]. A recent analysis of 20 contemporary randomized clinical trials with
a maximum follow-up of five years reports that TURP resulted in a significant im-
provement of maximum flow-rate and quality of life [Cornu et al., 2018; Lourenco
et al., 2010]. A second prostatic operation (re-TURP) has been reported at a con-
stant annual rate of approximately 1-2%. A review analyzing 29 RCTs found a
re-treatment rate of 2.6% after a mean follow-up of sixteen months [Cornu et al.,
2018]. In a large-scale study of 20,671 men, the overall re-treatment rates (i.e., ei-
ther re-TURP, urethrotomy or bladder neck incision) were 5.8%, 12.3%, and 14.7%,
respectively at one, five, and eight years follow-up. More specifically, the respective
incidence of re-TURP was 2.9%, 5.8% and 7.4% [Madersbacher et al., 2005]. How-
ever, urology guidelines highlight the lack of extended follow-up after the surgery
and no clear evidence explaining re-treatment.

Building a model with the ability to predict the outcome of this surgery is of
primary importance for improving population-level health, especially since prostatic
problems are a common condition for aging men. In this section, we use ZiMM ED
to train such a model using a cohort based on SNIIRAM. The outcome of this
surgery is evaluated by the distribution of the blurry relapses, observed through
the use of specific drugs related to urination problems.

2.3.3 Surgery identification and labels construction

The identification of a TURP surgery in SNIIRAM is made through some specific
CCAM codes provided by clinicians2. However, it happens that two TURP surgeries
can occur in a pretty small amount of time. This is likely to correspond to a case
where a surgery has clearly failed and that a second surgery is required quickly,
which is not the type of complication we are interested in. If the amount of time
between the two surgeries is small, it would be improper to say that it corresponds
to a relapse. We thus define, following clinicians recommendations, a six week
period after the first surgery, as a single surgery block. If another TURP surgery
occurs inside the same block, we consider that it is part of the same medical act.
The timestamp of the event corresponds to the last surgery within the block, and
provides the value of T i for any patient i.

As far as the labels are concerned, a simple but efficient way to identify whether
the urinary problems have not ceased or reappeared after a while is to see if the
patient, at some point after the surgery, needs to take medications for these urina-
tion problems again3. For that purpose, we use a list (provided by clinicians) of 136
CIP-13 drugs that are mainly related to urination problems. We choose to drive the
prediction on a 18-months period after T i. So, using the notation of Section 2.2.1,
we chose the number of buckets B = 18 and bucket size of 30 days (540 days total).

2.3.4 Cohort construction and exploration

The construction of the cohort follows the flowchart illustrated in Figure 2.4. We
start by selecting all SNIIRAM patients alive, with at least one medical event re-

2We considered that a TURP surgery corresponds to the CCAM codes JGFA005, JGFA009,
JGFA015, JDPE002 or JGNE003.

3Following clinicians recommendations, we do not consider TURP surgeries that occur after
the first surgery block, and consider only drugs prescriptions as blurry relapses. Consequently,
we remove patients with repeated surgeries that are not part of the same block from the cohort
construction, as explained in Section 2.3.4.
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lated to urination problem (observed through medication or surgery codes) between
2010/01/01 and 2015/12/31. This selection gathers a little bit more than 5 million
patients. Then, we keep only male patients over 18 years old on 2014/12/31. This
reduces the size of the cohort by roughly 1 million patients. Keeping only patients
with a TURP surgery between 2010/01/01 and 2013/06/30 and with at least 2
events (whatever the types) occurring in the follow-up 18-months period leads to a
cohort containing 231 747 patients.

As explained in Section 2.3.3, we compute surgery blocks (any surgery that
occurs within a six week period after the first surgery is in the same block), that
are considered as a single event of surgery. We remove all the patients that have
another surgery out of this first block. We choose a follow-up period of 540 days,
corresponding to 18 buckets of 30 days, so that the follow-up period is of the order
of 18 months. Indeed, clinicians expect that such a relapse should occur not long
after the first year following surgery. As shown in Figure 2.4, the final cohort has
138 976 patients.

Patients covered by French universal
health insurance with at least one urina-

tion problem event (surgery or medication)
between 2010/01/01 and 2014/12/31

(n=5 136 308)

Excluded (n=1 045 234):
1. Age < 18; and > 110 if death

date is missing (n=39 300)
2. Women (n=1 005 933)
3. Wrong hospital stays dates

(n=1)

Exported cohort
(n=4 091 074)

Patients with surgery event be-
tween 2010/01/01 and 2013/06/30

(n=231 747)

Excluded (n=92 771):
1. More than 1 surgery bloc

(n=9 973)
2. Death before T + 18 months

(n=14 617)
3. Less than 500 observation days

in the 18-months follow-up
period (n=68 181)

Analysed cohort
(n=138 976)

Figure 2.4 – Flowchart leading to the final cohort considered in the experiments.

The numbers of medical codes, namely medications, procedures and diagnoses
observed in the final cohort, are displayed in Table 2.1. We count the number of
unique codes, the number of codes observed at least 50 times and the number of
codes remaining when keeping only the ones prior to T i for each patient i. The
statistics reported in Table 2.1 below and in all figures from this section use the raw
coding scheme (that use CIP-13 for drugs), in order to better describe the statistics
of the data, while for training ZiMM ED we replace CIP-13 by ATC (for drugs)
since, as illustrated in Section 2.3.7 below, it allows to reduce the vocabulary size
of drugs while keeping the same predictive performance.

On the left-hand side of Figure 2.5, we show, for this final cohort, the distri-

53



CHAPTER 2. ZIMM: DEEP LEARNING FOR CLAIMS DATA

Table 2.1 – Number of medical codes observed and remaining when applying the filters used
in the cohort construction. Bold values correspond to the vocabulary sizes of the medical
codes used when training the ZiMM ED architecture.

Medications Medical procedures Diagnoses Total

#Unique 12 785 9 578 5 885 28 248
#Unique before T i 10 664 7 460 4 563 22 687

#Unique seen > 50 times before T i 6 713 1 155 1 403 9 271

bution of ni, namely the number of patients with a given total number of drugs
prescriptions (related to urinary problems) during the follow-up 18 months period.
Namely, the y-axis of Figure 2.5 (left-hand side) displays #{i : ni = b} where
b = 1, . . . , B is given by the x-axis. We observe a sharp decrease for b = 1, . . . , 5
from the mode b = 1, which corresponds to patients who continue to buy their
drugs and just keep doing it (for several months) after their surgery. However, we
observe a second mode around b = 15 which certainly corresponds to the relapse we
are interested in. This plot shows that the considered problem is in a “weak signal”
setting, since the second mode is very small compared to the first (at b = 1), and
that the prediction of this relapse requires a dedicated methodology indeed. This
observation is corroborated by the right-hand side of Figure 2.5, which displays the
number of patients having at least one drug prescription (related to urinary prob-
lems) on a specified bucket, namely the y-axis displays #{i, yi,b ≥ 1} as a function
of b given by the x-axis. Once again, the function is decreasing from the mode b = 1
and plateaus between b = 7 and b = 18, because of patients who continue to pur-
chase the drug after the surgery. We do not observe a second mode as we did in the
left-hand side, since the relapse we are interested in is blurry: the drug purchases
that define this blurry relapse are heterogeneously distributed among patients and
end up flattened out when aggregated in the display of the right-hand side. This
motivates, once again, the dedicated methodology proposed by the ZiMM model.
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Figure 2.5 – Left-hand side. Number of patients as a function of the overall number of
drugs prescriptions related to urinary problems during the follow-up 18 months period.
The y-axis displays #{i : ni = b} where b = 1, . . . , B is given by the x-axis. We observe a
sharp decrease from the mode b = 1 followed by a second weak mode around b = 15. The
number of patients with ni = 0 is equal to 84 328 and is not displayed for readability of the
plot. Right-hand side. Number of patients having at least one drug prescription (related
to urinary problems) in each time bucket: the y-axis displays #{i, yi,b ≥ 1} as a function
of b given by the x-axis. We observe a sharp decrease from the mode b = 1 and a plateau
between b = 7 and b = 18, since patients often continue to purchase the drug after the
surgery.

In the left-hand side of Figure 2.6, we show the distribution of the observation
period of each patient before T i. We observe that it is highly heterogeneous: the
maximum is reached at 1 274 days while the average is 486 days, and some patients
have a very short observation period. This variability is related to the variability of
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the medical practice itself: some patients are treated for urological problems with
drugs for a long time before the surgery, while other patients have surgery sooner.
On the right-hand side of Figure 2.6, we show the distribution of the durations of all
hospitalizations before T i. We observe that most hospitalizations are one-day short,
and that the distribution is heavy-tailed, since these hospitalizations can be related
to a large set of possible health problems, leading to very heterogeneous durations.
Let us stress that we are considering all hospitalizations that occur before T i, and
not only the ones related to a surgery or a urological problem, since all the health
events of a patient i are kept before T i.
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Figure 2.6 – Left-hand side. Distribution of the observation period of each patient before T i.
The strong variability of the observation period displayed here is related to the variability
of the medical practice itself: some patients are treated for urological problems with drugs
for a long time before the surgery, while other patients have surgery sooner. Right-hand
side. Distribution of the durations of all hospitalizations before T i. Most hospitalizations
are one-day short, and the distribution is heavy-tailed, since these hospitalizations can be
related to a large set of possible health problems.

In the left-hand side of Figure 2.7, we display the distribution of the number of
unique events per patient. We observe that the bulk of the distribution is between
5 and 200 unique events, with an average of 10 unique events. The right-hand
side of Figure 2.7 shows the number of days with at least one medical code in the
history of patients before T i. We observe that most patients have more than 10
days in their history with medical codes. Both displays from Figure 2.7 show that
the health pathways of most patients before T i contain enough variability when
assessed by the number of distinct codes, and the number of distinct days with at
least one medical code, corresponding to a sufficient amount of variability to carry
information for the prediction of the blurry relapse after T i.
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Figure 2.7 – Left-hand side. Distribution of the number of events per patient before T i.
The bulk of the distribution is between 5 and 200 unique events, with an average of 117
events per patient. Right-hand side. Distribution of the number of days with at least one
medical code in the history of patients before T i. We observe that most patients have more
than 10 days in their history with medical codes. Both figures show that most patients
have a significant amount of medical code variability and time variability before T i.
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2.3.5 Implementation and evaluation metrics

Our models are implemented with TensorFlow 2 [Abadi et al., 2015]. The ZiMM ED
architecture is open-source in GitHub4. All the models are trained on a machine
equipped with 4 GeForce GTX 1080Ti GPUs and another machine with 3 Tesla
V100 GPUs. All the models are trained with the Nadam optimizer [Dozat, 2016;
Kingma and Ba, 2015] with learning rate 0.001. The hyper-parameters of all the
models are selected through an extensive random grid search, whereas in order to
reduce computation time, some hyper-parameters are fixed “by hand”. An ablation
study showing the sensitivity to hyper-parameters is provided in Section 2.3.7 below.

Metrics: mean-AP, AUC-PR and AUC-ROC. In order to evaluate the qual-
ity of the prediction of yi = [yi,1, . . . , yi,B] (when using ZIMM ED architecture or
any other benchmark models) we use mean-AP, defined as the average of the area
under the precision-recall curve (AUC-PR), namely we compute the average over
the buckets b = 1, . . . , B of the AUC-PR for each bucket b, i.e., the AUC-PR of the
prediction of yi,b. Moreover, we report also the AUC-PR and the AUC-ROC (area
under the ROC curve) for the binary classification problem ni > 0 against ni = 0.

Train, validation and test sets. All our experiments use the same random data
splitting into 70% of patients for training, 15% of patients for validation and 15%
for testing. We checked the stationarity across the three splits of labels distribution
and the main drugs, diagnoses and medical procedures. We report performances
on both the validation and test sets.

2.3.6 Baselines

The prediction performances of ZIMM-ED is compared with several baselines, in-
volving several featuring strategies and different predictive models, both for binary
prediction (ni > 0 versus ni = 0) using the AUC-PR and AUC-ROC metrics and for
the prediction of yi = [yi,1, . . . , yi,B] (the mean-AP score defined in Section 2.3.5).
Results are reported in Table 2.2 below, where we observe that ZIMM ED improves
all the considered baselines, in particular for the prediction of yi, since the ZiMM
model is dedicated to this task. We consider the following baseline models, more
details are provided below:

• LRl2: Logistic regression with `2 penalization using the scikit-learn library [Pe-
dregosa et al., 2011];

• GBDT: Gradient boosting using XGBoost [Chen et al., 2015];
• MLP: Multilayer Perceptron model with 128 hidden units;
• Word2vec: we first train embeddings of all medical codes following [Mikolov

et al., 2013], and use these pre-trained embeddings in a MLP with 128 units;
• LSTM: a single embedding layer and one forward LSTM layer with 128 hidden

units;
• Patient2Vec [Zhang et al., 2018].

We evaluated them using 3 types of input features described below.
4https://github.com/stephanegaiffas/zimm.git
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Static features (SF). This featuring is used for LRl2, GBDT and MLP models.
Inputs correspond to aggregated counts of grouped medical codes over the entire
observation period of a patient. Number of occurrences of each code is then multi-
plied by the corresponding one-hot encoding. Hence, the input is a N -dimensional
vector representing a patient’s medical history. One logistic regression (LRl2) and
one gradient boosting decision tree (GBDT) is trained for each bucket b. This input
is also used for the multi-layer perceptron (MLP).

Dynamic features (DF). This featuring is used for LRl2, GBDT and MLP
models. We split the sequence into subsequences of 60 days, on which we compute
the same features as with SF, but within each interval, in order to incorporate
longitudinal information into LRl2, GBDT and MLP.

Irregularly-spaced sequence (ISS). This featuring is used for Word2vec, LSTM
and Patient2Vec models. In this case, we consider the original patient sequence.
For both the Word2vec model and the LSTM one, the events are just gathered
in a sequence in which the time-stamps or duration of the events are not used.
In the Word2vec case, the codes embeddings are trained using Word2vec [Mikolov
et al., 2013] and prediction is performed with a MLP with 128 hidden nodes. In
the LSTM case, an embedding layer and one forward LSTM layer with 128 hidden
units are trained in an end-to-end fashion and is applied to the sequence. The Pa-
tient2vec uses the same input features as the ZIMM ED architecture (i.e., sequence,
including time-stamps and duration of events). It has been only used for the binary
classification problem (i.e., ni > 0 versus ni = 0).

The predictive performance of all benchmarks and of ZiMM ED are presented
in Table 2.2, where we report mean-AP scores on the test set, as well as AUC-
PR and AUC-ROC scores for the binary classification problem (see Section 2.3.5
for definition of these scores). According to this table, GBDT-based models on
dynamic features (GBDT-DF) performs the best among all benchmark models,
however the ZIMM ED architecture outperforms all the benchmark models both
for the multi-output yi prediction and for the binary prediction.

Table 2.2 – Predictive performances (on test data) of benchmark models and ZiMM ED
architecture. ZIMM ED appears to perform the best among all models both for multi-
output and binary prediction.

Model mean-AP AUC-ROC AUC-PR
LRl2-SF 0.19 0.64 0.50
GBDT-SF 0.24 0.67 0.56
MLP-SF 0.18 0.64 0.49
LRl2-DF 0.21 0.65 0.53
GBDT-DF 0.25 0.68 0.57
MLP-DF 0.19 0.65 0.50
Word2vec-ISS 0.20 0.65 0.53
LSTM-ISS 0.21 0.67 0.54
Patient2Vec - 0.68 0.55
ZiMM ED (best model) 0.306 0.701 0.619
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2.3.7 Ablation study: model performances and variations

The performance reported in Table 2.2 for the ZiMM ED architecture relies on a
careful tuning of several hyper-parameters. This corresponds to the so-called ZiMM
ED default architecture, where the hyperparameters used are described in Table 2.3
below.

Hyper-parameter Value

D
at
a

pr
ep

ro
ce
ss
in
g Maximum #days observed in patients’ sequence before T i 50

Maximum #medical events within the same day 24
Vocabulary size for medications coded with ATC 1036
Vocabulary size for diagnoses coded with ICD-10 1391
Vocabulary size for medical procedures coded with CCAM 1146

E
m
be

dd
in
g
of

m
ed

ic
al

co
de

s
an

d
tim

e

Embedding dimension of medical codes 64
L2 penalization rate for medical codes embedding 0.005
Gaussian dropout rate 0.3
Embedding dimension for time horizon and hospitalization duration 4
L2 penalization rate for time embedding 0.01
Batch normalization epsilon 1e-06

E
m
be

dd
in
gs

ag
gr
eg
at
io
n Aggregation mode self-attention

Number of heads 3
Weight drop-connect rate 0.3
Dropout rate 0.2
L2 penalization rate 0.01

Zi
M
M

E
nc
od

er

Recurrent layer type LSTM
#hidden units per layer 64
#layers 1
Dropout rate 0.3
Recurrent dropout rate 0.2

Zi
M
M

D
ec
od

er Recurrent layer type GRU
#hidden units per layer 32
#RNN layers used in parallel for each value ni = b 1
#common RNN layers 1
Gaussian dropout rate 0.3
Recurrent dropout rate 0.2

Tr
ai
ni
ng

Optimizer type Nadam
Learning rate 0.001
Batch size 256

Table 2.3 – ZiMM-ED default parameters.

The hyper-parameters described in Table 2.3 have been selected using an exten-
sive random search for the best mean-AP metric on the validation set. In Figure 2.8
below, we illustrate the value of this metric (y-axis) for some models that were eval-
uated during the random search. Each point corresponds to a single model with
fixed hyper-parameters, and the set of models is the same on all four displays of
Figure 2.8. In each of these displays we “align” all the models that share a specific
hyper-parameter, namely, respectively from left to right: the number of heads used
in the self-attention layer, the number of hidden units used in the recurrent layer of
the ZiMM Encoder, the number of stacked recurrent layers in ZiMM Encoder and
finally the number of hidden units used in the ZiMM Decoder. The red point on
all four Figures corresponds to the best model overall, that leads to the ZiMM ED
default architecture described in Table 2.3. Finally, note that the random search
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included many other hyper-parameters, such as several learning-rate scheduling
strategies, dropout rates, types of dropout regularization including input, output,
embedding, cell-state and multiplicative Gaussian, that we do not report for the
sake of conciseness.
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Figure 2.8 – Validation mean-AP (y-axis) of some models evaluated during random search,
where each point corresponds to a single model. The set of models is the same on all four
displays and the best one (ZiMM ED default) is indicated by a red point. Each display
aligns all the models that share a specific hyper-parameter, being, respectively from left
to right, the number of heads used in the self-attention layer, the number of hidden units
used in the recurrent layer of the ZiMM Encoder, the number of stacked recurrent layers
in ZiMM Encoder and finally the number of hidden units used in the ZiMM Decoder.

The remaining of this section proposes an ablation study: we modify some
hyperparameters or change some components of ZiMM ED default, and report
the impacts on performances in Table 2.4 below, where the first line reports the
performances of ZiMM ED default. A discussion around these ablations is given
below.

Data preprocessing. The first part (PP) of Table 2.4 shows results obtained
with variations of the maximum sequence lengths and the classification system used
for drugs encoding. The ZiMM ED default uses ATC encoding instead of the raw
CIP-13 encoding, which allows to reduce the vocabulary size from 10 664 for CIP-13
to 1 105 for ATC. As observed in Table 2.4, using CIP-13 (which is a much larger
vocabulary for drugs) instead of ATC actually hurts strongly the performances. We
observe also that considering longer sequences (100 days) instead of what we do in
ZiMM ED default (50 days) deteriorates the performances as well.

Embedding of medical codes and time. Variations around the way embed-
dings are produced for medical codes and time are reported in the second part (Em-
bedding) of Table 2.4. We observe that increasing the embedding dimensions does
not offer performance increase (using Edim = 128 instead of the default Edim = 64),
as well as using the same embedding space for all medical codes. In the ZiMM ED
default model, tokenized durations and distance to T i (see Section 2.2.3 above) are
embedded with trainable embedding vectors. We observe in Table 2.4 that without
these time embeddings, the model performance deteriorates. Also, we find that us-
ing trigonometric functions for “positional encoding” as proposed in Vaswani et al.
[2017] instead of learned embeddings does not help in our setting.

Embeddings aggregation. Results obtained through different embeddings ag-
gregation techniques are presented in the third part (Aggregation) of Table 2.4. We
applied penalization and dropout on attention weights as proposed in [Lin et al.,
2019], as well as DropConnect [Wan et al., 2013] for regularizing weights in large
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fully-connected layers. As explained in Vaswani et al. [2017], multi-head attention
allows the model to jointly attend information from different representation sub-
spaces at different positions, however in our setting, increasing Nheads (number of
heads) in the self-attention layer does not clearly improve the performance. We
tested Nheads = 8, as reported in Luo et al. [2019], but the best performance in our
case was achieved with Nheads = 3.

ZiMM Encoder. We report in the fourth part (Encoder) of Table 2.4 the re-
sults of extensive experiments performed in order to identify the best combination
of hyperparameters for both recurrent and convolutional layers (CNN): number of
hidden units, types of recurrent layers and different dropout rates used in the recur-
rent layers. Only the best results for each type of layer are reported in Table 2.4.
We observe that GRU layers perform generally as well as LSTM layers. Increasing
the number of hidden units in recurrent layers to Nunits = 128 instead of the default
choice Nunits = 64 does not significantly improve performance, as well as using two
stacked LSTM layers Nlayers = 2 instead of the default Nlayers = 1. We observed
also that in our setting, CNN layers badly under-perform compared to the other
types of layers. Finally, we tested “Multi-head transformer” which corresponds to
the transformer encoder [Vaswani et al., 2017] which takes as input all patient se-
quence of events. Clinical codes are embedded in the same way as for ZiMM model,
which is then passed to the encoder block with a 4-head self-attention mechanism
through the entire patient sequence.

Table 2.4 – Performances of some variations around the ZiMM ED default architecture, for
which all hyperparameters are given in Table 2.3 above. PP* stands for “preprocessing”.

Architecture modification # params val set test set
×105 mean-AP mean-AP AUC-ROC AUC-PR

ZiMM ED default 3.5 0.292 0.304 0.704 0.619

P
P
* CIP-13 drugs encoding 7.1 0.279 0.286 0.690 0.604

100-days sequence 3.5 0.291 0.300 0.701 0.616

E
m

be
dd

in
g Common embedding space 13.9 0.292 0.298 0.698 0.613

Without ∆t embedding 3.5 0.293 0.300 0.702 0.617
Positional encoding 3.5 0.292 0.302 0.702 0.620
Edim = 128 7.4 0.291 0.300 0.701 0.615

A
gg

re
ga

ti
on SA Nheads = 1 3.2 0.293 0.303 0.701 0.619

SA Nheads = 5 3.7 0.290 0.300 0.704 0.620
SA Nheads = 8 4.1 0.292 0.300 0.701 0.616
mean 3.1 0.287 0.297 0.696 0.612

E
nc
od

er

Nunits = 128 4.6 0.293 0.301 0.701 0.618
Nlayers = 2 3.8 0.290 0.306 0.701 0.619
bi-LSTM 4.2 0.290 0.300 0.700 0.617
GRU 3.3 0.294 0.300 0.702 0.614
Conv1D 3.2 0.231 0.234 0.649 0.536
Multi-head transformer 6.2 0.279 0.287 0.694 0.607

D
ec
od

er

FC layer 3.3 0.290 0.300 0.691 0.617
LSTM 3.5 0.291 0.301 0.703 0.619
basic RNN 3.4 0.292 0.301 0.701 0.619
Nunits = 18 3.4 0.292 0.298 0.702 0.619
Nlayers = 2 3.5 0.288 0.297 0.699 0.615
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ZiMM Decoder. Finally, we consider some variations around the ZiMM De-
coder, and report the results in the fifth part (Decoder) of Table 2.4. While the
ZiMM Decoder described in Section 2.2.4 uses a single feed-forward layer to pre-
dict the mixture probabilities, a GRU layer to learn hidden states and GRU layers
to predict the parameters of each multinomial distributions, one could use instead
fully-connected layers to predict all the parameters of the ZiMM distribution, or
alternatively simple RNN layers or LSTM layers. The fully-connected layers de-
teriorates the most the performance, while replacing the GRU layers by RNN or
LSTM layers only deteriorates it mildly. We also report the performance obtained
with two stacked GRU Nlayers = 2 instead of the default one Nlayers = 1 to produce
the hidden states (see Equation (2.3)) and with a smaller hidden size Nunits = 18
instead of Nunits = 32.

2.3.8 Visualization of the embeddings produced for diagnoses and
drugs codes

We explore the embeddings produced for diagnoses and drugs as a by-product of the
ZiMM ED architecture (see Section 2.2.3 about the embeddings of medical codes).
We use UMAP [McInnes et al., 2018] in order to reduce the dimension from 64 to 2.
The resulted projections are shown in Figure 2.9. The UMAP algorithm requires
four hyper-parameters: the number of neighbors to consider when approximating
the local metric (n-neighbors), the desired separation between close points in the
embedding space (min-dist), the number of training epochs (n-epochs) and finally
the projection dimension (d). We fixed d = 2 and n-epochs = 500. ICD10 disease
codes are mapped in PheWAS phenotypes [Diogo et al., 2018] and drugs codes
are mapped to the first level of the ATC classification (main anatomical group
consisting of a single letter), leading to the color scheme used in Figure 2.9.
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Figure 2.9 – UMAP projections of the embeddings of medical codes. Left-hand side. Each
point is the projection of the embedding vector of an ICD code, colored with its corre-
sponding PheWAS phenotypes. Note that many points share the same color since many
ICD10 codes have the same PheWAS. The legend provides only the most common diag-
noses. Right-hand side. UMAP projections of the drugs embeddings, colored by the first
level of the ATC classification (one letter).

On the left-hand side of Figure 2.9, we can observe the UMAP projections of
the embedding vectors of each ICD10 code, colored by the corresponding PheWAS
phenotype. The hyper-parameters used here for UMAP are n-neighbors=20 and
min-dist=0.1. Many points share the same color since many ICD10 codes have
the same PheWAS. We observe here that diagnoses that are known to co-occur
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and belong to the same clinical groups are projected close to each other. The red-
orange-highlighted points are the phenotypes the most related to the urogenital
system such as Hyperplasia of prostate, Retention of urine, Benign neoplasm of
male genital organs, and Cancer of prostate. We can also observe a visually strong
association of these phenotypes with Essential hypertension. This is confirmed
by Michel et al. [2004], where the association of hypertension and symptoms of
benign prostatic hyperplasia is well-studied and understood. Other clinical concepts
that are projected close to each other are Hearing loss and Chemotherapy, Urinary
tract infection and Hematuria (blue-highlighted points), which is also confirmed
by Lin et al. [2015]; Taborelli et al. [2019], where it is shown that renal dialysis is
associated with a higher risk of cancer.

On the right-hand side of Figure 2.9, we observe the UMAP projections of drugs
embeddings, colored by the first level of the ATC classification (first letter). The
UMAP hyper-parameters used here are n-neighbors=50 and min-dist=0.2. The
dark blue points correspond to Various ATC class (V), that mainly correspond to
contrast agents for MRI. We observe that these points do not form any cluster
but are dispersed over the whole space. This can be explained by the fact that the
considered cohort contain only men with BPH (see Section 2.3.4), that often have an
MRI of the prostate. Furthermore, we observe that the drugs from the class Genito-
urinary system and sex hormones (G), that include drugs for urination problems,
form one cluster with other age-related medications from the class Nervous system
(N), namely analgesics, anti-thrombotics, psycholeptics, psychotropic, and anti-
parkinsonian drugs.

2.4 Conclusion and future works

In this work, we propose ZiMM Encoder Decoder (ZiMM ED), an end-to-end deep
learning model trained against the negative log-likelihood of the new ZiMM (Zero-
Inflated Mixture of Multinomial) model, for the modeling of long-term and blurry
relapses. This deep learning model is trained on a cohort based on a large electronic
health record database, that contains only claims and no clinical data, from the
whole French population. We show that it improves the performances of a large
number of baselines, including the state-of-the-art, for the considered predictive
task. ZiMM ED allows to represent the full health pathways of patients, using
all available information, with minimal preprocessing. Therefore, this end-to-end
architecture can be used for other tasks as well, through transfer learning or fine
tuning of the model. Future works will consider a multi-task version of ZiMM ED
(several types of relapses, or other types of events), and other improvements using
alternative architectures for attention modeling [Dai et al., 2019; Kitaev et al., 2020;
Lan et al., 2020; Wu et al., 2019].

This work addresses the problem of predicting the blurry relapses of the TURP
surgery, which is the first step towards an evidence-based approach using machine-
learning to help the clinical decision. The next step is to exploit these predictions
to help to decide the timing of the surgery: given the current health pathway of
the patient, what is his probability of a relapse, so that it can help the clinician to
decide when to perform the surgery, or to consider alternative treatments.
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Chapter 3

About contrastive unsupervised
representation learning for
classification and its
convergence 1

“ 性相近也，习相远也。
By nature, men are nearly alike; by practice, they get
to be wide apart. ”

Confucius (translated by James Legge)
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CHAPTER 3. CONTRASTIVE LEARNING

Abstract
Contrastive representation learning has been recently proved to be very effi-
cient for self-supervised training. These methods have been successfully used
to train encoders which perform comparably to supervised training on down-
stream classification tasks. A few works have started to build a theoretical
framework around contrastive learning in which guarantees for its perfor-
mance can be proven. We provide extensions of these results to training with
multiple negative samples and for multiway classification. Furthermore, we
provide convergence guarantees for the minimization of the contrastive train-
ing error with gradient descent of an overparametrized deep neural encoder,
and provide some numerical experiments that complement our theoretical
findings.

3.1 Introduction

The aim of this work is to provide additional theoretical guarantees for contrastive
learning [van den Oord et al., 2018], which corresponds to methods allowing to
learn useful data representations in an unsupervised setting. Unsupervised repre-
sentation learning was initially approached with a fair amount of success by training
through the minimization of losses coming from “pretext” tasks, a technique known
as self-supervision [Doersch and Zisserman, 2017], where labels can be automatically
constructed. Notable examples of pretext tasks in computer vision include coloriza-
tion [Zhang et al., 2016], transformation prediction [Dosovitskiy et al., 2014; Gidaris
et al., 2018] or predicting patch relative positions [Doersch et al., 2015]. Some the-
oretical guarantees [Lee et al., 2020] were recently proposed to support training on
pretext tasks.

Contrastive learning is also known to be very effective for pretraining supervised
methods [Caron et al., 2020; Chen et al., 2020a,b; Grill et al., 2020], where we
can observe that, quite surprisingly, the gap between unsupervised and supervised
performance has been closed for tasks such as image classification: the use of a
pretrained image encoder on top of simple classification layers, that are trained
on a fraction of the labels available, allows to achieve an accuracy comparable to
that of a fully supervised end-to-end training [Grill et al., 2020; Hénaff et al., 2019].
Contrastive methods show also strong success in natural language processing [Devlin
et al., 2018; Logeswaran and Lee, 2018; Mikolov et al., 2013; van den Oord et al.,
2018], video classification [Sun et al., 2019], reinforcement learning [Srinivas et al.,
2020] and time-series [Franceschi et al., 2019].

Although the papers cited above introduce methods with considerable varia-
tions, they mostly agree on the following basic pretraining approach: provided a
dataset, an encoder is trained using a contrastive loss whose minimization allows to
learn embeddings that are similar for pairs of samples (called the positives) that are
close to each other (such as pairs of random data augmentations of the same image,
see Chen et al. [2020a]; He et al. [2020]), while such embeddings are contrasted for
dissimilar pairs (called the negatives).

However, despite growing efforts [Saunshi et al., 2019; Wang and Isola, 2020],
as of today, few theoretical results have been obtained. For instance, there is
still no clear theoretical explanation of how a supervised task could benefit from
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an upstream unsupervised pretraining phase, or of what could be the theoretical
guarantees for the convergence of the minimization procedure of the contrastive
loss during this pretraining phase. Getting some answers to these questions would
undoubtedly be a step towards a better theoretical understanding of contrastive
representation learning.

Our contributions in this paper are twofold. In Section 3.3, we provide new
theoretical guarantees for the classification performance of contrastively trained
models in the case of multiway classification tasks, using multiple negative samples.
We extend results from Saunshi et al. [2019] to show that unsupervised training
performance reflects on a subsequent classification task in the case of multiple tasks
and when a high number of negative samples is used. In Section 3.4, we prove
a convergence result for an explicit algorithm (gradient descent), when training
overparametrized deep neural network for unsupervised contrastive representation
learning. We explain how results from Allen-Zhu et al. [2019] about training con-
vergence of overparametrized deep neural networks can be applied to a contrastive
learning objective. The results and major assumptions of both Sections 3.3 and 3.4
are illustrated in Section 2.3 through experiments on a few simple datasets.

3.2 Related work

A growing literature attempts to build a theoretical framework around contrastive
learning and to provide justifications for its success beyond intuitive ideas. In Saun-
shi et al. [2019] a formalism is proposed together with results on classification per-
formance based on unsupervisedly learned representation. However, these results
do not explain the performance gain that is observed empirically [Chen et al., 2020a;
He et al., 2020] when a high number of negative samples are used, while the results
proposed in Section 3.3 below hold for an arbitrary large number of negatives (and
decoupled from the number of classification tasks). A more recent work [Wang and
Isola, 2020] emphasizes the two tendencies encouraged by the contrastive loss: the
encoder’s outputs are incentivized to spread evenly on the unit hypersphere, and en-
codings of same-class samples are driven close to each other while those of different
classes are driven apart. Interestingly, this work also shows how the trade-off be-
tween these two aspects can be controlled, by introducing weight factors in the loss
leading to improved performance. Chuang et al. [2020] considers the same setting
as Saunshi et al. [2019] and addresses the bias problem that comes from collisions
between positive and negative sampling in the unsupervised constrastive loss. They
propose to simulate unbiased negative sampling by assuming, among other things,
extra access to positive sampling. However, one has to keep in mind that excessive
access to positive sampling gets the setting closer to that of supervised learning.

In a direction that is closer to the result proposed in Section 3.4 below, Wen
[2020] provides a theoretical guarantee on the training convergence of gradient de-
scent for an overparametrized model that is trained with an unsupervised con-
trastive loss, using earlier works by Allen-Zhu et al. [2019]. However, two separate
encoders are considered instead of a single one: one for the query, which corresponds
to a sample from the dataset, and one for the (positive and negative) samples to
compare the query to. In this setting, it is rather unclear how the two resulting
encoders are to be used for downstream classification. In Section 3.4 below, we ex-
plain how the results from Allen-Zhu et al. [2019] can be used for the more realistic
setting of a single encoder, by introducing a reasonable assumption on the encoder
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outputs.

3.3 Unsupervised training improves supervised perfor-
mance

In this section, we provide new results in the setting previously considered in Saunshi
et al. [2019]. We assume that data are distributed according to a finite set C of latent
classes, and denote NC = card(C) its cardinality. Let ρ be a discrete distribution
over C that is such that ∑

c∈C
ρ(c) = 1 and ρ(c) > 0

for all c ∈ C. We denote Dc a distribution over the feature space X from a class
c ∈ C. In order to perform unsupervised contrastive training, on the one hand we
assume that we can sample positive pairs (x, x+) from the distribution

Dsim(x, x+) =
∑
c∈C

ρ(c)Dc(x)Dc(x+), (3.1)

namely, (x, x+) is sampled as a mixture of independent pairs conditionally to a
shared latent class, sampled according to ρ. On the other hand, we assume that we
can sample negative samples x− from the distribution

Dneg(x−) =
∑
c∈C

ρ(c)Dc(x−). (3.2)

Given k 6 NC − 1, a (k+ 1)-way classification task is a subset T ⊆ C of cardinality
|T | = k + 1, which induces the conditional distribution

DT (c) = ρ(c | c ∈ T )

for c ∈ C and we define
DT (x, c) = DT (c)Dc(x).

In particular, we denote as C, whenever there is no ambiguity, the NC-way classifi-
cation task where the labels are sampled from ρ, namely DC(x, c) = ρ(c)Dc(x).

Supervised loss, mean classifier

For an encoder function f : X → Rd, we define a supervised loss (cross-entropy
with the best possible linear classifier on top of the representation) over task T as

Lsup(f, T ) = inf
W∈R|T |×d

E(x,c)∼DT

[
− log

(
exp (Wf(x))c∑

c′∈T exp (Wf(x))c′

)]
. (3.3)

Then, it is natural to consider the mean or discriminant classifier with weights Wµ

which stacks, for c ∈ T , the vectors

Wµ
c,: = Ex∼Dc [f(x)] (3.4)

and whose corresponding (supervised) loss is given by

Lµsup(f, T ) = E(x,c)∼DT

[
− log

(
exp (Wµf(x))c∑

c′∈T exp (Wµf(x))c′

)]
. (3.5)

Note that, obviously, one has Lsup(f, T ) 6 Lµsup(f, T ).
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Unsupervised contrastive loss

We consider the unsupervised contrastive loss with N negative samples given by

LNun(f) = E(x,x+)∼Dsim
X−∼D⊗Nneg

− log

 exp
(
f(x)>f(x+)

)
exp (f(x)>f(x+)) +∑

x−∈X− exp (f(x)>f(x−))

 ,
(3.6)

where Dsim is given by Equation (3.1) and where D⊗Nneg stands for the N tensor
product of the Dneg distribution given by Equation (3.2). When a single negative
sample is used (N = 1), we will use the notation Lun(f) = L1

un(f). In the rest
of the chapter, N will stand for the number of negatives used in the unsupervised
loss (3.6).

3.3.1 Inequalities for unsupervised training with multiple classes

The following Lemma states that the unsupervised objective with a single negative
sample can be related to the supervised loss for which the target task is classification
over the whole set of latent classes C.
Lemma 3.1. For any encoder f : X → Rd, one has

Lsup(f, C) 6 Lµsup(f, C) 6 1
pρmin

Lun(f) + logNC , (3.7)

where pρmin = minc ρ(c).
The proof of Lemma 3.1 is given in the appendix, and uses a trick from Lemma 4.3

in Saunshi et al. [2019] relying on Jensen’s inequality. This Lemma relates the un-
supervised and the supervised losses, a shortcoming being the introduction of pρmin,
which is small for a large NC since obviously pρmin 6 1/NC .

The analysis becomes more difficult with a larger number of negative samples.
Indeed, in this case, one needs to carefully keep track of how many distinct classes
will be represented by each draw. This is handled by Theorem B.1 of Saunshi et al.
[2019], but the bound given therein only estimates an expectation of the supervised
loss w.r.t. the random subset of classes considered (so called tasks). For multiple
negative samples, the approach adopted in the proof of Lemma 3.1 above further
degrades, since pρmin would be replaced by the minimum probability among tuple
draws, an even much smaller quantity.

We propose the following Lemma, which assumes that the number of negative
samples is large enough compared to the number of latent classes.
Lemma 3.2. Consider the unsupervised objective with N negative samples as de-
fined in Equation (3.6) and assume that N satisfies N = Ω(NC logNC). Then, we
have

Lsup(f, C) 6 Lµsup(f, C) 6 1
pρcc(N)L

N
un(f), (3.8)

where pρcc(N) is the probability to have all coupons after N draws in an NC-coupon
collector problem with draws from ρ.

The proof of Lemma 3.2 is given in the appendix. In this result, pρcc(N) is
related to the following coupon collector problem. Assume that ρ is the uniform
distribution over C and let T be the random number of necessary draws until each
c ∈ C is drawn at least once. It is known (see for instance Motwani and Raghavan
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[1995]) that the expectation and variance of T are respectively given by NCHNC

and (NCπ)2/6, where Hn is the n-th harmonic number Hn = ∑n
i=1 1/i. This entails

using Chebyshev’s inequality that

P (|T −NCHNC | > βNC) 6
π2

6β2

for any β > 0, so that whenever ρ is sufficiently close to a uniform distribution and
N = Ω(NC logNC), the probability pρcc is reasonably high. Due to the randomness
of the classes sampled during training, it is difficult to obtain a better inequality
than Lemma 3.2 if we want to upper bound LNun(f) by the supervised Lsup(f, C)
on all classes. However, the result can be improved by considering the average loss
over tasks Lsup,k(f), as explained in the next Section.

3.3.2 Guarantees on the average supervised loss

In this Section, we bound the average of the supervised classification loss on tasks
that are subsets of C. Towards this end, we need to assume (only in this Section) that
ρ is uniform. We consider supervised tasks consisting in distinguishing one latent
class from k other classes, given that they are distinct and uniformly sampled from
C. We define the average supervised loss of f for (k + 1)-way classification as

Lsup,k(f) = ET ∼Dk+1 [Lsup (f, T )] , (3.9)

where Dk+1 is the uniform distribution over (k + 1)-way tasks, which means uni-
form sampling of {c1, · · · , ck+1} distinct classes in C. We define also the average
supervised loss of the mean classifier

Lµsup,k(f) = ET ∼Dk+1

[
Lµsup (f, T )

]
, (3.10)

where we recall that Lµsup (f, T ) is given by (3.5). The next Proposition is a gener-
alization to arbitrary values of k and N of Lemma 4.3 from Saunshi et al. [2019],
where it is assumed k = 1 and N = 1.
Proposition 3.3. Consider the unsupervised loss LNun(f) from Equation (3.6) with
N negative samples. Assume that ρ is uniform over C and that 2 6 k + 1 6 NC.
Then, any encoder function f : X → Rd satisfies

Lsup,k(f) 6 Lµsup,k(f) 6 k

1− τ+
N

(
LNun(f)− τ+

N log(N + 1)
)

with τ+
N = P

[
ci = c,∀i | (c, c1, · · · , cN ) ∼ ρ⊗N+1

]
.

The proof of Proposition 3.3 is given in the appendix. This Proposition states
that, in a setting similar to that of Saunshi et al. [2019], on average, the (k+1)-way
supervised classification loss is upper-bounded by the unsupervised loss (both with
N = 1 negative or N > 1 negatives), that contrastive learning algorithms actually
minimize. Therefore, these results give hints for the performances of the learned
representation for downstream tasks.

Also, while Saunshi et al. [2019] only considers an unsupervised loss with N =
k negatives along with (k + 1)-way tasks for evaluation, the quantities N and k
are decoupled in Proposition 3.3. Furthermore, whenever ρ is uniform, one has
τ+
N = ∑

c∈C ρ(c)N+1 = N−NC , which decreases to 0 as N → +∞, so that a larger
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number of negatives N makes k/(1− τ+
N ) smaller and closer to k. This provides

a step towards a better understanding of what is actually done in practice with
unsupervised contrastive learning. For instance, N = 65536 negatives are used
in He et al. [2020].

While we considered a generic encoder f and a generic setting in this Section,
the next Section 3.4 considers a more realistic setting of an unsupervised objective
with a fixed available dataset, and the study of an explicit algorithm for the training
of f .

3.4 Convergence of gradient descent for contrastive un-
supervised learning

This section leverages results from Allen-Zhu et al. [2019] to provide convergence
guarantees for gradient-descent based minimization of the contrastive training er-
ror, where the unsupervisedly trained encoder is an overparametrized deep neural
network.

Deep neural network encoder

We consider a family of encoders f defined as a deep feed-forward neural network
following Allen-Zhu et al. [2019]. We quickly restate its structure here for the sake
of completeness. A deep neural encoder f is parametrized by matrices A ∈ Rm×dx ,
B ∈ Rd×m and W1, . . . ,WL ∈ Rm×m for some depth L. For an input x ∈ Rdx , the
feed-forward output y ∈ Rd is given by

g0 = Ax, h0 = φ(g0), gl = Wlhl−1, hl = φ(gl) for l = 1, . . . , L,
y = BhL,

where φ is the ReLU activation function. Note that the architecture can also include
residual connections and convolutions, as explained in Allen-Zhu et al. [2019].

We know from Allen-Zhu et al. [2019] that, provided a δ-separation condition on
the dataset (xi, yi) for i = 1, . . . , n with δ > 0 and sufficient overparametrization of
the model (m = Ω

(
poly(n,L, δ−1) · d

)
), the optimisation of the least-squares error

1
2
∑n
i=1 ‖ŷi − yi‖

2
2 using gradient descent provably converges to an arbitrarily low

value ε > 0, where ŷi = f(xi) are the network outputs. Moreover, the convergence
is linear i.e. the number of required epochs is T = O(log(1/ε)), although involving
a constant of order poly(n,L, δ−1). Although this result does not directly apply to
contrastive unsupervised learning, we explain below how it can be adapted provided
a few additional assumptions.

Ideally, we would like to prove a convergence result on the unsupervised objective
defined in Equation (3.6). However, we need to define an objective through an
explicitly given dataset so that it falls within the scope of Allen-Zhu et al. [2019].
Regarding this issue, we assume in what follows that we dispose of a set of fixed
triplets (x, x+, x−) ∈ (Rdx)3 we train on.

Objective function

Let us denote this fixed training set {(xi, x+
i , x

−
i )}ni=1. Each element leads to an

output zi = (f(xi), f(x+
i ), f(x−i )) by the encoder and we optimize the empirical
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objective

L̂un(f) =
n∑
i=1

ζ
(
f(xi)T (f(x−i )− f(x+

i ))
)

=
n∑
i=1

`(zi), (3.11)

where we introduced the loss function `(zi) = `(zi,1, zi,2, zi,3) = ζ(zTi,1(zi,3 − zi,2))
with ζ(x) = log (1 + ex). Note that L̂un(f)/n is the empirical counterpart of the
unsupervised loss (3.6). Our management of the set of training triplets can be com-
pared to that of Wen [2020] who similarly fixes them in advance but uses multiple
negatives and the same xi as a positive. However, two distinct encoders are trained
therein, one for the reference sample xi and another for the rest. We consider here
the more realistic case where a single encoder is trained. Our approach also applies
to multiple negatives, but we only use a single one here for simplicity. We need the
following data separation assumption from Allen-Zhu et al. [2019].
Assumption 3.1. We assume that all the samples x ∈ Xdata = ⋃n

i=1{xi, x+
i , x

−
i }

are normalized ‖x‖ = 1 and that there exists δ > 0 such that ‖x− x′‖2 > δ for any
x, x′ ∈ Xdata.

Note that sampling the positives and negatives x+
i , x

−
i need not to be made

through simple draws from the dataset. A common practice in contrastive learn-
ing [Chen et al., 2020a] is to use data augmentations, where we replace x±i by ψ(x±i )
for an augmentation function ψ also drawn at random. Such an augmentation can
include, whenever inputs are color images, Gaussian noise, cropping, resizing, color
distortion, rotation or a combination thereof, with parameters sampled at random
in prescribed intervals. The setting considered here allows the case where x±i are
actually augmentations (we won’t write ψ(x±i ) but simply x±i to simplify nota-
tions), provided that Assumption 3.1 is satisfied and that such augmentations are
performed and fixed before training. Note that, in practice, the augmentations are
themselves randomly sampled at each training iteration [Chen et al., 2020a]. Un-
fortunately, this would make the objective intractable and the convergence result
we are about to derive does not apply in that case.

In order to apply the convergence result from Allen-Zhu et al. [2019], we need
to prove that the following gradient-Lipschitz condition

`(z + z′) 6 `(z) +
〈
∇`(z), z′

〉
+ Lsmooth

2
∥∥z′∥∥2 (3.12)

holds for any z, z′ ∈ R3d, for some constant Lsmooth > 0, where ` is the loss given
by (3.11). However, as defined previously, ` does not satisfy (3.12) without extra
assumptions. We propose to bypass this problem by making the following additional
assumption on the norms of the outputs of the encoder.
Assumption 3.2. For each element x ∈ Xdata , the output z = f(x) ∈ Rd satisfies

η < ‖z‖ < C

during and at the end of the training of the encoder f , for some constants 0 < η <
C < +∞.

In Section 2.3, we check experimentally on three datasets (see Figure 3.3 herein)
that this assumption is rather realistic. The lower bound η > 0 is necessary and
used in Lemma 3.6 below, while the upper bound C is used in the next Lemma 3.4,
which establishes the gradient-Lipschitz smoothness of the unsupervised loss ` and
provides an estimation of Lsmooth.
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Lemma 3.4. Consider the unsupervised loss ` given by (3.11), grant Assump-
tion 3.2 and define the set

B3 =
{
z = (z1, z2, z3) ∈ (Rd)3 : max

j=1,2,3
‖zj‖22 6 C

2
}

where C > 0 is defined in Assumption 3.2. Then, the restriction of ` to B3 satis-
fies (3.12) with a constant Lsmooth 6 2 + 8C2.

The proof of Lemma 3.4 is given in the appendix. Now, we can state the main
result of this Section.
Theorem 3.5. Grant both Assumptions 3.1 and 3.2, let ε > 0 and let L̂un(f) be
the loss given by (3.11). Then, assuming that

m > Ω
(poly(n,L, δ−1) · d

ε

)
,

the gradient descent algorithm with a learning rate ν and a number of steps T such
that

ν = Θ
( dδ

poly(n,L) ·m
)

and T = O
(poly(n,L)

δ2ε2

)
,

finds a parametrization of the encoder f satisfying

L̂un(f) 6 ε.

The proof of Theorem 3.5 is given in the appendix. Although it uses Theo-
rem 6 from Allen-Zhu et al. [2019], it is actually not an immediate consequence
of it. Indeed, in our case, the Theorem 6 therein only allows us to conclude that
‖∇L̂un(f)‖ 6 ε, where the gradient is taken w.r.t. the outputs of f . The conver-
gence of the objective itself is obtained thanks to the following Lemma whose proof
is given in the appendix.
Lemma 3.6. Grant Assumption 3.2 and assume that the parameters of the en-
coder f are optimized so that ‖∇L̂un(f)‖ 6 ε with ε < η/2, where η is defined
in Assumption 3.2. Then, for any i = 1, . . . , n, we have `(zi) 6 2ε/η where
zi = (f(xi), f(x+

i ), f(x−i )).
This Lemma is crucial for proving Theorem 3.5 as it allows to show, in this

setting, that the reached critical point is in fact a global minimum.
A natural idea would be then to combine Theorem 3.5 with Proposition 3.3 in

order to prove that gradient descent training of the encoder using the unsupervised
contrastive loss helps to minimize the supervised loss. This paper makes a step
towards such a result, but let us stress that it requires much more work, to be con-
sidered in future papers, the technical problems to be addressed being as follows.
Firstly, the result of Theorem 3.5 applies to L̂un(f) and cannot be directly extrapo-
lated on Lun(f). Doing so would require a sharp control of the generalization error,
while Theorem 3.5 is about the training error only. Secondly, Assumption 3.1 re-
quires that all samples are separated and, in particular, distinct. This cannot hold
when the objective is defined through an expectation as we did in Section 3.3.
Indeed, it would be invalidated simply by reusing a sample in two different triples.

3.5 Experiments
In this section, we report experiments that illustrate our theoretical findings.
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Datasets and Experiments

We use a small convolutional network as encoder on MNIST [LeCun and Cortes,
2010] and FashionMNIST [Xiao et al., 2017], and VGG-16 [Simonyan and Zisser-
man, 2015] on CIFAR-10 [Krizhevsky et al., 2009]. Experiments are performed with
PyTorch [Paszke et al., 2019].

Results

Figure 3.1 provides an illustration of Lemma 3.1, where we display the values of
Lun (i.e., LNun with N = 1) and Lµsup(f, C) along training iterations over 5 separate
runs (and their average). We observe that Inequality (3.7) is satisfied on these
experiments, even when the logNC term is discarded. Moreover, both losses follow
a similar trend. Figure 3.2 illustrates Lemma 3.2 for several values of N . Once
again, we observe that both losses behave similarly, and that Inequality (3.8) seems
to hold even without the 1/pρcc term (removed for these displays).

0 500 1000 1500 2000 2500 3000
Train steps

0

2

4

6

8

10

Lo
ss

MNIST

0 500 1000 1500 2000 2500 3000
Train steps

2

4

6

8

FashionMNIST

0 3000 6000 9000 12000
Train steps

0

2

4

6

8

CIFAR-10

Supervised loss Unsupervised loss × 1
pmin

Figure 3.1 – Illustration of Lemma 3.1: we observe that Inequality (3.7) is satisfied on these
examples, even without the logNC term, and that both losses behave similarly (5 runs are
displayed together with their average).
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Figure 3.2 – Illustration of Lemma 3.2 with N = 15, 25, 35 on MNIST. We observe again
that both the unsupervised and supervised losses behave similarly and that Inequality (3.8)
is satisfied in these experiments, even without the 1/pρcc factor (5 runs are displayed together
with their average).

Finally, Figure 3.3 displays the minimum and maximum Euclidean norms of the
outputs of the encoder along training. On these examples, we observe that one can
indeed assume these norms to be lower and upper bounded by constants, as stated
in Assumption 3.2.
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Figure 3.3 – Minimum and maximum Euclidean norms of the outputs of the encoder along
contrastive unsupervised training. We observe that Assumption 3.2 is satisfied on these
examples (5 runs are displayed together with their average), the dashed line shows that the
minimum norms are away from 0 even in the early iterations.

3.6 Conclusion

This work provides extensions to previous results on contrastive unsupervised learn-
ing, in order to somewhat improve the theoretical understanding of the performance
that is empirically observed with pre-trained encoders used for subsequent super-
vised task. The main hindrance to tighter bounds in Section 3.3 is the blind ran-
domness of negative sampling, which is unavoidable in the unsupervised setting.
Section 3.4 explains how recent theoretical results about gradient descent training
of overparametrized deep neural networks can be used for unsupervised contrastive
learning, and concludes with an explanation of why combining the results from Sec-
tions 3.3 and 3.4 requires many extra technicalities to be considered in future works.
Let us conclude by stressing, once again, our motivations for doing this: unsuper-
vised learning theory is much less developed than supervised learning theory, and
recent empirical results (see Section 2.1) indicate that some forms of contrastive
learning enable the learning of powerful representations without supervision. In
many fields of application, labels are too difficult, too expensive or too invasive
to obtain (in medical applications, see for instance Ching et al. [2018]). We be-
lieve that a better understanding of unsupervised learning is therefore of utmost
importance.

3.7 Appendix: technical proofs

3.7.1 Proofs for Section 3.3

Apart from the similarity between the unsupervised and supervised loss, the proof
of Lemma 3.1 uses properties of log-sum-exp.

Proof of Lemma 3.1. We first rewrite the unsupervised loss as:

Lun(f) = E(x,x+)∼Dsim,x−∼Dneg log
(
1 + exp

(
f(x)T (f(x−)− f(x+))

))
where we recognize the ζ function ζ(x) = log(1 + ex). We start by using Jensen’s
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inequality

Lun(f) = E(x,x+)∼Dsim
x−∼Dneg

[
ζ
(
f(x)T (f(x−)− f(x+))

)]
> Ec,c−∼ρ,x∼Dc

[
ζ
(
f(x)T (µc− − µc)

)]
> pρminEc∼ρ,x∼Dc

[
max
c−

ζ
(
f(x)T (µc− − µc)

)]
= pρminEc∼ρ,x∼Dc

[
max
c−

LSE
(
0, f(x)T (µc− − µc)

)]
> pρmin

(
Ec∼ρ,x∼Dc

[
LSE

(
f(x)T (µc1 − µc), . . . , f(x)T (µcNC − µc)

)]
− logNC

)
= pρmin

(
Lµsup(f, C)− logNC

)
where we have used properties of the log-sum-exp function

max(x1, . . . , xn) 6 LSE(x1, . . . , xn) 6 max(x1, . . . , xn) + logn,

the fact that LSE is non-negative whenever one of its arguments is, and for x ∈ R2n

we have

LSE(x) = LSE(LSE(x1, x2), . . . ,LSE(x2n−1, x2n)) 6 max
j=1,...,n

LSE(x2j−1, x2j)+logn.

The proof of Lemma 3.2 considers the sample draws where all classes are rep-
resented.

Proof of Lemma 3.2. Let I ∈ [NC ]N the random vector of classes for each negative
sample (I ∼ ρ⊗N ) and let J be the set of represented classes i.e. J = {Ij | j ∈ [N ]}.
We have, again with Jensen’s inequality

LNun(f) = Ex,x+,x−1 ,...,x
−
N

[
LSE

(
0, f(x)T (f(x−1 )− f(x+)), . . . , f(x)T (f(x−N )− f(x+))

)]
> Ec∼ρ,I∼ρ⊗N ,x∼Dc

[
LSE

(
0, f(x)T (µI1 − µc), . . . , f(x)T (µIN − µc)

)]
> P (|J | = NC)E c∼ρ

I∼ρ⊗N
x∼Dc

[
LSE

(
0, f(x)T (µI1 − µc), . . . , f(x)T (µIN − µc)

)
| |J | = NC

]
> P (|J | = NC)Lµsup(f, C),

where we used that for S ⊂ [n] and x ∈ Rn we have LSE(xS) 6 LSE(x) with xS
the restriction of x to the indices in S. Finally, we have P (|J | = NC) = pρcc(N).

We restate Proposition 3.3 for cases N = 1 and N > 1. The proof uses Jensen’s
inequality and the uniformity of ρ.
Proposition 3.3 (restated). Consider the unsupervised loss LNun(f) from Equa-
tion (3.6) with N negative samples. Assume that ρ is uniform over C and that
2 6 k + 1 6 NC. Then,
(1) any encoder function f : X → Rd satisfies

Lsup,k(f) 6 Lµsup,k(f) 6 k

1− τ+

(
Lun(f)− τ+

)
with τ+ = Pc,c′∼ρ2 (c = c′), where Lun(f) is the unsupervised loss from Equa-
tion (3.6) with N = 1 negative sample;
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(2) more generally,

Lsup,k(f) 6 Lµsup,k(f) 6 k

1− τ+
N

(
LNun(f)− τ+

N log(N + 1)
)

with τ+
N = P(ci = c,∀i | c ∼ ρ, (c1, · · · , cN ) ∼ ρN ), and where LNun(f) is the

unsupervised loss from Equation (3.6).

Proof of Proposition 3.3. Let’s start with (1). By Jensen’s inequality, then use
log = log2 without loss of generality, and split the expectation into cases c− 6= c
and c− = c,

Lun(f) = E(c,c−)∼ρ2Ex,x+∼Dc,x−∼Dc−

[
log

(
1 + exp

(
f(x)T

(
f(x−)− f(x+)

)))]
> E(c,c−)∼ρ2,x∼Dc

[
log

(
1 + exp

(
f(x)T (µc− − µc)

))]
= (1− τ+)Ec∼ρ,x∼DcEc−∼ρ

[
log

(
1 + exp

(
f(x)T (µc− − µc)

))∣∣∣c− 6= c
]

+ τ+.

Let us write explicitly the uniform distribution ρ on C. On the one hand,

Ec−∼ρ
[
log

(
1 + exp

(
f(x)T (µc− − µc)

))∣∣∣c− 6= c
]

=
∑

c−∈C\{c}

1
NC − 1 log

(
1 + exp

(
f(x)T (µc− − µc)

))
,

on the other hand, And this is for every c− ∈ C\{c}. We rearrange the double sum
according to c−

Hence, using the uniformity of ρ,

Ec−∼ρ
[
log

(
1 + exp

(
f(x)T (µc− − µc)

))∣∣∣c− 6= c
]

=1
k
Ec1,...,ck∼ρ⊗k

[
k∑
i=1

log
(
1 + exp

(
f(x)T (µci − µc)

))∣∣∣∣∣{c, c1, . . . , ck} distinct
]

>
1
k
Ec1,...,ck∼ρ⊗k

[
log

(
1 +

k∑
i=1

exp
(
f(x)T (µci − µc)

))∣∣∣∣∣{c, c1, . . . , ck} distinct
]
.

That means we have

Lun(f) > 1− τ+

k
E c∼ρ,x∼Dc
c1,...,ck∼ρ⊗k

[
log

(
1 +

k∑
i=1

exp
(
f(x)T (µci − µc)

))∣∣∣∣∣{c, c1, . . . , ck} distinct
]

+ τ+

= 1− τ+

k
ET ∼Dk+1E(x,c)∼DT

− log

 exp(f(x)Tµc)
exp(f(x)Tµc) +∑

c−∈T
c− 6=c

exp (f(x)Tµc−)


+ τ+

= 1− τ+

k
Lµsup,k(f) + τ+.

As for (2), again by Jensen’s inequality, and split the expectation into cases
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c−i = c,∀i and ∃c−i 6= c,

LNun(f) = E(c,c−i )∼ρN+1Ex,x+∼Dc,x−i ∼Dc−
i

[
log

(
1 +

N∑
i=1

exp
(
f(x)T

(
f(x−i )− f(x+)

)))]

> E(c,c−i )∼ρN+1,x∼Dc

[
log

(
1 +

N∑
i=1

exp
(
f(x)T

(
µc−i
− µc

)))]

= (1− τ+
N )E c∼ρ

x∼Dc
Ec−i ∼ρN

[
log

(
1 +

N∑
i=1

exp
(
f(x)T (µc− − µc)

))∣∣∣∣∣∃c−i 6= c

]
+ τ+

N log(N + 1)

with
τ+
N = P(ci = c,∀i | c ∼ ρ, ci ∼ ρN ) =

∑
c∈C

ρ(c)N+1 = N−NC .

Considering the fact that

Ec−i ∼ρN

[
log

(
1 +

N∑
i=1

exp
(
f(x)T (µc− − µc)

))∣∣∣∣∣∃c−i 6= c

]
>

Ec−∼ρ
[
log

(
1 + exp

(
f(x)T (µc− − µc)

))∣∣∣c− 6= c
]
,

then by similar computations as in (1), we have

LNun(f) > 1− τ+
N

k
Lµsup,k(f) + τ+

N log(N + 1).

3.7.2 Proofs for Section 3.4

Let us first prove that under Assumption 3.2, the objective is gradient-Lipschitz
w.r.t. the network outputs.

Lemma 4.1. Consider the unsupervised loss ` given by (3.11), grant Assump-
tion 3.2 and define the set

B3 =
{
z = (z1, z2, z3) ∈ (Rd)3 : max

j=1,2,3
‖zj‖22 6 C

2
}

where C > 0 is defined in Assumption 3.2. Then, the restriction of ` to B3 satis-
fies (3.12) with a constant Lsmooth 6 2 + 8C2.

Proof. We will prove this result by bounding the norm of the Hessian matrix.
Let us write the gradient of `(z) with respect to z first. We have z ∈ R3d. For

ease of writing, we define the matrices A1, A2, A3 ∈ R3d×d as

A1 =

Id0d
0d

 A2 =

0d
Id
0d

 A3 =

0d
0d
Id


where Id, 0d ∈ Rd×d are the identity and zero matrix respectively. With this nota-
tion, we have zi = ATi z for i = 1, 2, 3 the three contiguous thirds of z’s coordinates.
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Our purpose is to compute

∂

∂z
`(z) = ∂

∂z

− log

 exp
(
zT1 z2

)
exp

(
zT1 z2

)
+ exp

(
zT1 z3

)
 .

Denote cosi,j = zTi zj , we can now compute for i, j ∈ {1, 2, 3} (i 6= j)

∂

∂z
cosi,j =

(
AiA

T
j +AjA

T
i

)
z =: ∂ cosi,j ∈ R3d.

Now, denote v = softmax (cos1,2, cos1,3) ∈ R2, we can write

∂

∂z
`(z) = (v1 − 1)∂ cos1,2 +v2∂ cos1,3 .

We proceed with the following computation

∂2

∂z2 cosi,j = AiA
T
j +AjA

T
i ,

which we will denote simply as ∂2 cosi,j . Before we get the Hessian of loss, we still
need to compute

∂v := ∂v

∂z
= (diag(v)− vvT )

(
∂ cosT1,2
∂ cosT1,3

)
∈ R2×3d.

Now we can write

∂2

∂z2 `(z) = (v1 − 1)∂2 cos1,2 +v2∂
2 cos1,3 +

(
∂ cos1,2 ∂ cos1,3

)
∂v.

We can now estimate the norm of this matrix which will provide an estimation
for the Lipschitz constant.

We find that
‖∂ cosi,j‖ 6 2 max (‖zi‖ , ‖zj‖) ,

keeping in mind that the matrix diag(v)− vvT has norm at most 1/2, this leads to∥∥∥(∂ cos1,2 ∂ cos1,3
)
∂v
∥∥∥ = 8 max

i,j
(‖zi‖ ‖zj‖) .

We have also that
∥∥∂2 cosi,j

∥∥ = 1.
All in all, we have

∥∥∥ ∂2

∂z2 `(z)
∥∥∥ = 2 + 8 maxi,j (‖zi‖ ‖zj‖). Recalling that we re-

stricted R3d so that we have maxi ‖zi‖ 6 C the result follows.

Theorem 3.5 is actually obtained in two steps. First, Theorem 6 from Allen-Zhu
et al. [2019] allows us to obtain that the gradient of the objective ∇L̂un(f) with
respect to the network outputs reaches arbitrarily low values. Then, combining this
with Assumption 3.2, this result can be extended into the objective itself.

Following appendix A of Allen-Zhu et al. [2019], we need to define the ` vectors
for our model. These are originally defined as `i = yi−y∗i (yi and y∗i are respectively
the output and label corresponding to an input xi from the dataset) for the `2 loss.
More generally, for a network output zi, they are defined as

`i = ∇z`(zi).
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Following the unsupervised training protocol, samples are fed into the network
three at a time x, x+ and x−. Let us denote θ the parameters of the network f , for
a triplet (xi, x+

i , x
−
i ), the trick is to write:

∂

∂θ
`(zi) = ∂z

∂θ

∂

∂z
`(zi)︸ ︷︷ ︸
`

with zi the concatenation of f(xi), f(x+
i ), f(x−i ).

By denoting (x1, x2, x3) = (xi, x+
i , x

−
i ), the previous writing is equivalent to

3∑
j=1

∂f(xj)
∂θ

ATj
∂

∂z
`(zi)

and by letting `i,j = ATj
∂
∂z `(zi), we obtain a triplet of loss vectors for each data

triple (matrices Aj defined in the previous proof).
Lemma 3.7. Grant Assumption 3.1 and let L̂un(f) be the loss incurred by f :

L̂un(f) =
n∑
i=1

`(f(xi), f(x+
i ), f(x−i ))

and let ε > 0 be the desired precision. Then, assumingm > Ω
(
poly(n,L, δ−1) · dε−1),

the gradient descent with learning rate ν = Θ
(

dδ
poly(n,L)·m

)
finds parameters such

that
‖∇L̂un(f)‖ 6 ε

after a number of steps T = O
(

poly(n,L)
δ2ε2

)
.

Proof. This result follows from Allen-Zhu et al. [2019] (see Theorem 6 and appendix
A). It corresponds to the case of a non-convex bounded loss function. We only need
to check the used loss function ` is bounded and gradient-Lipschitz smooth. The
latter condition is verified due to Lemma 4.1 and Assumption 3.2.

As for the boundedness, it is also a consequence of Assumption 3.2 and the fact
that the softplus function satisfies

ζ(x) ∼x→+∞ x and lim
x→−∞

ζ(x) = 0.

From here, we can derive a result for the objective itself (Theorem 3.5) thanks
to the following Lemma.
Lemma 4.2. Grant Assumption 3.2 and assume that the parameters of the en-
coder f are optimized so that ‖∇L̂un(f)‖ 6 ε with ε < η/2, where η is defined
in Assumption 3.2. Then, for any i = 1, . . . , n, we have `(zi) 6 2ε/η where
zi = (f(xi), f(x+

i ), f(x−i )).

Proof. Since we assume ‖∇L̂un(f)‖ 6 ε, this also implies that maxi,j ‖`i,j‖ 6 ε (see
Theorem 3 of Allen-Zhu et al. [2019] and its variant in appendix A).

We can write the norms ‖`i,j‖ as:

‖`i,1‖ = ‖(v1 − 1)zi,2 + v2zi,3‖
‖`i,2‖ = |v1 − 1| ‖zi,1‖
‖`i,3‖ = v2 ‖zi,1‖
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where we defined v = softmax(zT1 z2, z
T
1 z3).

Thanks to Assumption 3.2, we can argue that ‖zi,j‖ > η. These quantities can
be small for v1 → 1 and v2 → 0. Since we have maxi,j ‖`i,j‖ 6 ε, this implies
in particular that for all i we get ‖`i,3‖ 6 ε which means v2 6 ε/η, and we have
v2 = σ(zT1 (z3 − z2)). So for an instance i ∈ [n] the loss term in the objective is:

ζ(zTi,1(zi,3 − zi,2)) = log(1 + exp(zTi,1(zi,3 − zi,2)))
= − log(σ(−zTi,1(zi,3 − zi,2)))
= − log(1− σ(zTi,1(zi,3 − zi,2)))

= − log(1− v2) 6 v2
1− v2

6 2v2 6 2ε/η,

where we used the inequality − log(1−x) 6 x
1−x for 0 6 x < 1, and the assumption

that ε < η/2.

Lemma 4.2 allows us to deduce that the objective is well optimized (we treated
the loss term for a single triplet here but the same methods can be applied to the
whole objective with a number of gradient steps which is still polynomial).

Proof of Theorem 3.5. Theorem 3.5 is the consequence of combining Lemma 3.7
applied using εη

2n instead of ε and Lemma 4.2 (the 1/n factor can be absorbed by
the poly(n,L) factors in the bounds of Lemma 3.7).
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Chapter 4

WildWood: a new Random
Forest Algorithm 1

“ 莫听穿林打叶声，何妨吟啸且徐行。竹杖芒鞋轻胜
马，谁怕？一蓑烟雨任平生。
Listen not to the rain beating against the trees, Why
don’t you slowly walk and chant at ease? Better than
saddled horse I like sandals and cane, O I would fain?
Spend a straw-cloaked life in mist and rain. ”

Su Shi (translated by Xu Yuanchong)
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Abstract
We introduce WildWood (WW), a new ensemble algorithm for supervised
learning of Random Forest (RF) type. While standard RF algorithms use
bootstrap out-of-bag samples to compute out-of-bag scores, WW uses these
samples to produce improved predictions given by an aggregation of all pos-
sible subtrees of each fully grown tree in the forest. This is achieved by ag-
gregation with exponential weights computed over out-of-bag samples, that
are computed exactly and very efficiently thanks to an algorithm called con-
text tree weighting. This improvement, combined with a histogram strategy
to accelerate split finding, makes WW fast and competitive compared with
other well-established ensemble methods, such as standard RF and extreme
gradient boosting algorithms.

4.1 Introduction
We introduce WildWood (WW), a new ensemble method of Random Forest (RF)
type [Breiman, 2001]. The main contributions of this work and the main advantages
of WW are as follows.

Firstly, we use out-of-bag samples (trees in a RF use different bootstrapped
samples) very differently than what is done in standard RF [Biau and Scornet,
2016; Louppe, 2014]. Indeed, WW uses these samples to compute an aggregation of
the predictions of all possible subtrees of each tree in the forest, using aggregation
with exponential weights [Catoni, 2004]. This leads to much improved predictions:
while only leaves contribute to the predictions of a tree in standard RF, the full tree
structure contributes to predictions in WW. An illustration of this effect is given
in Figure 4.1 on a toy binary classification example, where we can observe that
subtrees aggregation leads to improved and regularized decision functions for each
individual tree and for the forest. We further illustrate in Figure 4.2 that each tree

Input data

Tree #1 Tree #2 Tree #3 Tree #4 Tree #5 Tree #6 Tree #7 Tree #8 Tree #9 Tree #10

aggregation

Forest

No aggregation

Figure 4.1 – WW decision functions illustrated on a toy dataset (left) with subtrees aggre-
gation (top) and without it (bottom). Subtrees aggregation improves trees predictions, as
illustrated by smoother decision functions in the top compared with the bottom, improving
overall predictions of the forest (last column).

becomes a stronger learner, and that excellent performance can be achieved even
when WW uses few trees. A remarkable aspect of WW is that this improvement
comes only at a small computational cost, thanks to a technique called “context tree
weighting”, used in lossless compression or online learning to aggregate all subtrees
of a given tree [Catoni, 2004; Helmbold and Schapire, 1997; Mourtada et al., 2021;
Willems, 1998; Willems et al., 1995]. Also, the predictions of WW do not rely
on MCMC approximations required with Bayesian variants of RF [Chipman et al.,
1998, 2010; Denison et al., 1998; Taddy et al., 2011], which makes our approach
drastically different from such approaches.
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Figure 4.2 – Mean test AUC and standard-deviations (y-axis) using 10 train/test splits for
WW and scikit-learn’s implementations of RF [Louppe, 2014] and Extra Trees [Geurts
et al., 2006], using default hyperparameters, on several datasets. Thanks to subtrees aggre-
gation, WW improves these baselines, even with few trees (x-axis is the number of trees).

Secondly, WW uses feature binning (“histogram” strategy), similarly to what
is done in extreme gradient boosting (EGB) libraries such as XGBoost [Chen and
Guestrin, 2016], LightGBM [Ke et al., 2017] and CatBoost [Dorogush et al., 2018;
Prokhorenkova et al., 2017]. This strategy helps to accelerate computations in
WW compared with standard RF algorithms, that typically require to sort features
locally in nodes and try a larger number of splits [Louppe, 2014]. This combina-
tion of subtrees aggregation and of the histogram strategy makes WW comparable
with state-of-the-art implementations of EGB libraries, as illustrated in Figure 4.3.
Moreover, WW supports optimal split finding for categorical features and missing
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0.9

1.0

AU
C

XGBoost LightGBM CatBoost WildWood

adult breastcancer car covtype letter satimage sensorless spambase
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tim
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Figure 4.3 – Test AUC (top) and training time (bottom) of WW compared with very popular
EGB libraries (after hyperoptimization of all algorithms, see Section 2.3 for details). WW’s
performance, which uses only 10 trees in this display, is only slightly below such strong
baselines, but is faster (training times are on a logarithmic scale) on the considered datasets.

values, with no need for particular pre-processing (such as one-hot encoding [Chen
and Guestrin, 2016] or target encoding [Dorogush et al., 2018; Prokhorenkova et al.,
2017]). Finally, WW is supported by some theoretical evidence, since we prove that
for a general loss function, the subtrees aggregation considered in WW leads indeed
to a performance close to that of the best subtree.

Related works

Since their introduction [Breiman, 2001], RF algorithms have become one of the
most popular supervised learning algorithm thanks to their ease of use, robustness
to hyperparameters [Biau and Scornet, 2016; Probst et al., 2019] and applicability to
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a wide range of domains, recent examples include bioinformatics [Qi, 2012], genomic
data [Chen and Ishwaran, 2012], predictive medicine [Alghatani et al., 2021; Subasi
et al., 2017], intrusion detection [Chen et al., 2021], astronomy [Hoffman et al.,
2021], car safety [Tavakoli et al., 2021], differential privacy [Patil and Singh, 2014],
COVID-19 [She et al., 2020] among many others. A non-exhaustive list of develop-
ments about RF methodology include extremely randomized forests [Geurts et al.,
2006], decision forests [Criminisi et al., 2012], prediction intervals [Calviño, 2020;
Roy and Larocque, 2020; Zhang et al., 2020], ranking [Zhou and Qiu, 2018], nonpara-
metric smoothing [Verdinelli andWasserman, 2021], variable importance Kazemitabar
et al. [2017]; Louppe et al. [2013]; Loyal et al. [2021], combination with boost-
ing [Ghosal and Hooker, 2021], generalized RF [Athey et al., 2018], robust forest Li
and Martin [2017], online learning [Lakshminarayanan et al., 2014; Mourtada et al.,
2021] and results aiming at a better theoretical understanding of RF [Arlot and
Genuer, 2014; Biau, 2012; Biau et al., 2008; Genuer, 2012; Mentch and Zhou, 2020;
Mourtada et al., 2020; Scornet, 2016a,b; Scornet et al., 2015; Zhou and Mentch,
2021].

A recent empirical study Zhou and Mentch [2021] suggests that tree depth lim-
itation in RF is an effective regularization mechanism which improves performance
on low signal-to-noise ratio datasets. In Mourtada et al. [2021], an improvement of
Mondrian Forests [Lakshminarayanan et al., 2014] is introduced for online learning,
using subtrees aggregation with exponential weights, which is particularly conve-
nient in the online learning setting. However, this paper considers only the online
setting, with purely random trees (splits are not optimized using training data),
leading to poor performances compared with realistic decision trees. In WW, we
use a similar subtrees aggregation mechanism for batch learning differently: we
make the most of the bootstrap, one of the key ingredients of RF, which pro-
vides in-the-bag and out-of-bag samples, to perform aggregation with exponential
weights, together with efficient decision trees grown using the histogram strategy.

Extreme boosting algorithms are another type of ensemble methods. XG-
Boost [Chen and Guestrin, 2016] provides an extremely popular scalable tree boost-
ing system which has been widely adopted in industry. LightGBM [Ke et al., 2017]
introduced the “histogram strategy” for faster split finding, together with clever
downsampling and features grouping algorithms in order to achieve high perfor-
mance in reduced computation times. CatBoost [Probst et al., 2019] is another
boosting library which pays particular attention to categorical features using target
encoding, while addressing the potential bias issues associated to such an encoding.

Limitations. Our implementation of WW is still evolving and is not yet at the
level of maturity of state-of-the-art EGB libraries such as [Chen and Guestrin, 2016;
Ke et al., 2017; Probst et al., 2019]. It does not outperform such strong baselines,
but proposes an improvement of RF algorithms, and gives an interesting balance
between performance and computational efficiency.

4.2 WildWood: a new Random Forest algorithm

We consider batch supervised learning, where data comes as a set of i.i.d training
samples (xi, yi) for i = 1, . . . , n with vectors of numerical or categorical features
xi ∈ X ⊂ Rd and yi ∈ Y. Our aim is to design a RF predictor ĝ( · ; Π) =
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1
M

∑M
m=1 f̂( · ; Πm) : X → Ŷ computed from training samples, where Ŷ is the pre-

diction space. Such a RF computes the average of M randomized trees predictions
f̂( · ; Πm) following the principle of bagging [Breiman, 1996; Oza and Russell, 2001],
with Π = (Π1, . . . ,ΠM ) where Π1, . . . ,ΠM are i.i.d realizations of a random vari-
able corresponding to bootstrap and feature subsampling (see Section 4.2.1 below).
Each tree is trained independently of each other, in parallel. In what follows we
describe only the construction of a single tree and omit from now on the dependence
on m = 1, . . . ,M .

Feature binning

The split finding strategy described in Section 4.2.1 below works on binned features.
While this technique is of common practice in EGB libraries [Chen and Guestrin,
2016; Ke et al., 2017; Prokhorenkova et al., 2017], we are not aware of an imple-
mentation of it for RF. The input n × d matrix X of features is transformed into
another same-size matrix of “binned” features denoted Xbin. To each input feature
j = 1, . . . , d is associated a set Bj = {1, . . . , bj} of bins, where bj 6 bmax with bmax
a hyperparameter corresponding to the maximum number of bins a feature can use
(default is bmax = 256 similarly to Ke et al. [2017], so that a single byte can be
used for entries of Xbin). When a feature is continuous, it is binned into bmax bins
using inter-quantile intervals. If it is categorical, each modality is mapped to a bin
whenever bmax is larger than its number of modalities, otherwise sparsest modalities
end up binned together. If a feature j contains missing values, its rightmost bin in
Bj is used to encode them. After binning, each column satisfies Xbin

•,j ∈ Bn
j .

4.2.1 Random trees

Let C = ∏d
j=1Bj be the binned feature space. A random tree is a pair (T ,Σ),

where T is a finite ordered binary tree and Σ contains information about each node
in T , such as split information. The tree is random and its source of randomness
Π comes from the bootstrap and feature subsampling as explained below.

Finite ordered binary trees

A finite ordered binary tree T is represented as a finite subset of the set {0, 1}∗ =⋃
n>0{0, 1}n of all finite words on {0, 1}. The set {0, 1}∗ is endowed with a tree

structure (and called the complete binary tree): the empty word root is the root,
and for any v ∈ {0, 1}∗, the left (resp. right) child of v is v0 (resp. v1). We
denote by intnodes(T ) = {v ∈ T : v0,v1 ∈ T } the set of its interior nodes and by
leaves(T ) = {v ∈ T : v0,v1 6∈ T } the set of its leaves, both sets are disjoint and
the set of all nodes is nodes(T ) = intnodes(T ) ∪ leaves(T ).

Splits and cells

The split σv = (jv, tv) ∈ Σ of each v ∈ intnodes(T ) is characterized by its dimension
jv ∈ {1, . . . , d} and a subset of bins tv ( {1, . . . , bjv}. We associate to each v ∈ T a
cell Cv ⊆ C which is defined recursively: Croot = C and for each v ∈ intnodes(T )
we define

Cv0 := {x ∈ Cv : xjv ∈ tv} and Cv1 := Cv \ Cv0.
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When jv corresponds to a continuous feature, bins have a natural order and tv =
{1, 2, . . . , sv} for some bin threshold sv ∈ Bjv ; while for a categorical split, the
whole set tv is required. By construction, (Cv)v∈leaves(T ) is a partition of C.

Bootstrap and feature subsampling

Let I = {1, . . . , n} be the training samples indices. The randomization Π of the tree
uses bootstrap: it samples uniformly at random, with replacement, elements of I
corresponding to in-the-bag (itb) samples. If we denote as Iitb the indices of unique
itb samples, we can define the indices of out-of-bag (otb) samples as Iotb = I \Iitb.
A standard argument shows that P[i ∈ Iitb] = 1− (1− 1/n)n → 1− e−1 ≈ 0.632 as
n→ +∞, known as the 0.632 rule [Efron and Tibshirani, 1997]. The randomization
Π uses also feature subsampling: each time we need to find a split, we do not try
all the features {1, . . . , d} but only a subset of them of size dmax, chosen uniformly
at random. This follows what standard RF algorithms do [Biau and Scornet, 2016;
Breiman, 2001; Louppe, 2014], with the default dmax =

√
d.

Split finding on histograms

For K-class classification, when looking for a split for some node v, we compute the
node’s “histogram” histv[j, b, k] = ∑

i∈Iitb:xi∈Cv 1xi,j = b, yi = k for each sampled
feature j, each bin b and label class k seen in the node’s samples (actually weighted
counts to handle bootstrapping and sample weights). Of course, one has histv =
histv0 + histv1, so that we don’t need to compute two histograms for siblings v0
and v1, but only a single one. Then, we loop over the set of non-constant (in the
node) sampled features {j : #{b : ∑k histv[j, b, k] > 1} > 2} and over the set of
non-empty bins {b : ∑k histv[j, b, k] > 1} to find a split, by comparing standard
impurity criteria computed on the histogram’s statistics, such as gini or entropy for
classification and variance for regression.

Bin order and categorical features

The order of the bins used in the loop depends on the type of the feature. If
it is continuous, we use the natural order of bins. If it is categorical and the
task is binary classification (labels in {0, 1}), we use the bin order that sorts
histv[j, b, 1]/∑k=0,1 histv[j, b, k] with respect to b, namely the proportion of labels
1 in each bin. This allows to find the optimal split with complexity O(bj log bj), see
Theorem 9.6 in Breiman et al. [1984], the logarithm coming from the sorting oper-
ation, while there are 2bj−1 − 1 possible splits. This trick is used by EGB libraries
as well, using an order of gradient/hessian statistics of the loss considered [Chen
and Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2017].

ForK-class classification withK > 2, we consider two strategies: (1) one-versus-
rest, where we train MK trees instead of M , each tree trained with a binary one-
versus-rest label, so that trees can find optimal categorical splits and (2) heuristic,
where we train M trees and where split finding uses K loops over bin orders that
sort histv[j, b, k]/∑k′ histv[j, b, k′] (w.r.t b) for k = 0, . . . ,K−1. If a feature contains
missing values, we do not loop only left to right (along bin order), but right to left
as well, in order to compare splits that put missing values on the left or on the
right.
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Split requirements

Nodes must hold at least one itb and one otb sample to apply aggregation with
exponential weights, see Section 4.2.2 below. A split is discarded if it leads to
children with less than nmin-leaf itb or otb samples and we do not split a node with
less than nmin-split itb or otb samples. These hyperparameters only weakly impact
WW’s performances and sticking to default values (nmin-leaf = 1 and nmin-split = 2,
following scikit-learn [Louppe, 2014; Pedregosa et al., 2011]) is usually enough
(see Appendix 4.7.4 from the supplementary material).

Related works on categorical splits

In Coppersmith et al. [1999], an interesting characterization of an optimal cate-
gorical split for multiclass classification is introduced, but no efficient algorithm
is, to the best of our understanding, available for it. A heuristic algorithm is
proposed therein, but it requires to computing, for each split, the top principal
component of the covariance matrix of the conditional distribution of labels given
bins, which is computationally too demanding for an RF algorithm intended for
large datasets. Regularized target encoding is shown in Pargent et al. [2021] to
perform best when compared with many alternative categorical encoding meth-
ods. Catboost [Prokhorenkova et al., 2017] uses target encoding, which replaces
feature modalities by label statistics, so that a natural bin order can be used for
split finding. To avoid overfitting on uninformative categorical features, a debiasing
technique uses random permutations of samples and computes the target statistic of
each element based only on its predecessors in the permutation. However, for mul-
ticlass classification, target encoding is influenced by the arbitrarily chosen ordinal
encoding of the labels. LightGBM [Ke et al., 2017] uses a one-versus-rest strategy,
which is also one of the approaches used in WW for categorical splits on multiclass
tasks. For categorical splits, where bin order depends on labels statistics, WW
does not use debiasing as in Prokhorenkova et al. [2017], since aggregation with
exponential weights computed on otb samples allows to deal with overfitting.

Tree growth stopping. We do not split a node and make it a leaf if it contains
less than nmin-split itb or otb samples. The same applies when a node’s impurity is
not larger than a threshold ε (ε = 0 by default). When only leaves or non-splittable
nodes remain, the growth of the tree is stopped. Trees grow in a depth-first fashion
so that childs v0 and v1 have memory indexes larger than their parent v (as required
by Algorithm 3 below).

4.2.2 Prediction function: aggregation with exponential weights

Given a tree T grown as described in Sections 4.2.1 and 4.2.1, its prediction function
is an aggregation of the predictions given by all possible subtrees rooted at root,
denoted {T : T ⊂ T }. While T is grown using itb samples, we use otb samples
to perform aggregation with exponential weights, with a branching process prior
over subtrees, that gives more importance to subtrees with a good predictive otb
performance.
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Node and subtree prediction

We define vT (x) ∈ leaves(T ) as the leaf of T containing x ∈ C. The prediction of
a node v ∈ nodes(T ) and of a subtree T ⊂ T is given by

ŷv = h((yi)i∈Iitb : xi∈Cv) and ŷT (x) = ŷvT (x), (4.1)

where h : ∪n>0Yn → Ŷ is a generic “forecaster” used in each cell and where a
subtree prediction is the one of its leaf containing x.

A standard choice for regression (Y = Ŷ = R) is the empirical mean forecaster

ŷv = 1
nv

∑
i∈Iitb : xi∈Cv

yi, (4.2)

where nv = |{i ∈ Iitb : xi ∈ Cv}|.
For K-class classification with Y = {1, . . . ,K} and Ŷ = P(Y), the set of proba-

bility distributions over Y, a standard choice is a Bayes predictive posterior with a
prior on P(Y) equal to the Dirichlet distribution Dir(α, . . . , α), namely the Jeffreys
prior on the multinomial model P(Y), which leads to

ŷv(k) = nv(k) + α

nv + αK
, (4.3)

for any k ∈ Y, where nv(k) = |{i ∈ Iitb : xi ∈ Cv, yi = k}|. By default, WW
uses α = 1/2 (the Krichevsky-Trofimov forecaster [Tjalkens et al., 1993]), but one
can perfectly use any α > 0, so that all the coordinates of ŷv are positive. This
is motivated by the fact that WW uses as default the log loss to assess otb per-
formance for classification, which requires an arbitrarily chosen clipping value for
zero probabilities. Different choices of α only weakly impact WW’s performance,
as illustrated in Appendix 4.7.4.

We use otb samples to define the cumulative losses of the predictions of all
T ⊂ T

LT =
∑
i∈Iotb

`(ŷT (xi), yi), (4.4)

where ` : Ŷ × Y → R+ is a loss function. For regression problems, a default choice
is the quadratic loss `(ŷ, y) = (ŷ − y)2 while for multiclass classification, a default
is the log-loss `(ŷ, y) = − log ŷ(y), where ŷ(y) ∈ (0, 1] when using (4.3), but other
loss choices are of course possible.

Prediction function

Let x ∈ C. The prediction function f̂ of a tree T in WW is given by

f̂(x) =
∑
T⊂T π(T )e−ηLT ŷT (x)∑

T⊂T π(T )e−ηLT with π(T ) = 2−‖T‖, (4.5)

where the sum is over all subtrees T of T rooted at root, where η > 0 is temper-
ature parameter and ‖T‖ is the number of nodes in T minus its number of leaves
that are also leaves of T . Note that π is the distribution of the branching process
with branching probability 1/2 at each node of T , with exactly two children when
it branches. A default choice is η = 1 for the log-loss (see in particular Corollary 4.3
in Section 4.3 below), but it can also be tuned through hyperoptimization, although
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we do not observe strong performance gains, see Appendix 4.7.4 from the supple-
mentary material. The prediction function (4.5) is an aggregation of the predictions
ŷT (x) of all subtrees T , weighted by their performance on otb samples and with
prior π(T ) = 2−‖T‖. This aggregation procedure can be understood as a non-greedy
way to prune trees: the weights depend not only on the quality of one single split
but also on the performance of each subsequent split.

Computing f̂ from Equation (4.5) is computationally and memory-wise infeasi-
ble for a large T , since it involves a sum over all T ⊂ T and requires one weight for
each T . Indeed, the number of subtrees of a minimal tree that separates n points is
exponential in the number of nodes, and hence exponential in n. However, it turns
out that one can compute exactly and very efficiently f̂ thanks to the prior choice π
together with an adaptation of context tree weighting [Catoni, 2004; Helmbold and
Schapire, 1997; Willems, 1998; Willems et al., 1995].
Theorem 4.1. The prediction function (4.5) can be written as f̂(x) = f̂root(x),
where f̂root(x) satisfies the recursion

f̂v(x) = 1
2
wv
wden

v
ŷv +

(
1− 1

2
wv
wden

v

)
f̂va(x) (4.6)

for v,va ∈ path(x) (a ∈ {0, 1}) the path in T going from root to vT (x), where
wv := exp(−ηLv) with Lv := ∑

i∈Iotb:xi∈Cv `(ŷv, yi) and where wden
v are weights

satisfying the recursion

wden
v =

{
wv if v ∈ leaves(T ),
1
2wv + 1

2w
den
v0 w

den
v1 otherwise.

(4.7)

The proof of Theorem 4.1 is given in Appendix 4.6.1 of the supplementary ma-
terial, a consequence of this Theorem being a very efficient computation of f̂(x) is
described in Algorithms 3 and 4 below. Algorithm 3 computes the weights wden

v
using the fact that trees in WW are grown in a depth-first fashion, so that we can
loop once, leading to a O(|nodes(T )|) complexity in time and in memory usage, over
nodes from a data structure that respects the parenthood order. Direct computa-
tions can lead to numerical over- or under-flows (many products of exponentially
small or large numbers are involved), so Algorithm 3 works recursively over the
logarithms of the weights (line 6 uses a log-sum-exp function that can be made
overflow-proof). Algorithm 3 is applied once T is fully grown, so that WW is ready

Algorithm 3 Computation of log(wden
v ) for all v ∈ nodes(T ).

1: Inputs: T , η > 0 and losses Lv for all v ∈ nodes(T ). Nodes from nodes(T ) are stored
in a data structure nodes that respects parenthood order: for any v = nodes[iv] ∈
intnodes(T ) and children va = nodes[iva] for a ∈ {0, 1}, we have iva > iv.

2: for v ∈ reversed(nodes) do
3: if v is a leaf then
4: Put log(wden

v )← −ηLv
5: else
6: Put log(wden

v )← log( 1
2e
−ηLv + 1

2e
log(wden

v0 )+log(wden
v1 ))

7: end if
8: end for
9: return The set of log-weights {log(wden

v ) : v ∈ nodes(T )}

to produce predictions using Algorithm 4 below. Note that hyperoptimization of η
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or α, if required, does not need to grow T again, but only to update wden
v for all

v ∈ nodes(T ) with Algorithm 3, making hyperoptimization of these parameters par-
ticularly efficient. The recursion used in Algorithm 4 has a complexity O(|path(x)|)

Algorithm 4 Computation of f̂(x) for any x ∈ C.
1: Inputs: Tree T , losses Lv and log-weights log(wden

v ) computed by Algorithm 3
2: Find vT (x) ∈ leaves(T ) (the leaf containing x) and put v← vT (x)
3: Put f̂(x) ← ŷv (the node v forecaster, such as (4.2) for regression or (4.3) for classifi-

cation)
4: while v 6= root do
5: Put v← parent(v)
6: Put α← 1

2 exp(−ηLv − log(wden
v ))

7: Put f̂(x)← αŷv + (1− α)f̂(x)
8: end while
9: return The prediction f̂(x)

which is the complexity required to find the leaf vT (x) containing x ∈ C: Algo-
rithm 4 only increases by a factor 2 the prediction complexity of a standard RF
(in order to go down to vT (x) and up again to root along path(x)). More details
about the construction of Algorithms 3 and 4 can be found in Appendix 4.6.1 of
the supplementary material.

4.3 Theoretical guarantees

This section proposes some theoretical guarantees on the subtrees aggregation used
in WW, see (4.5). We say that a loss function ` is η-exp-concave for some η > 0
whenever z 7→ exp(−η`(z, y)) is concave for any y ∈ Y. We consider a fully-grown
tree T computed using itb samples and the set of otb samples (xi, yi)i∈Iotb on which
LT is computed using (4.4), and we denote notb := |Iotb|.
Theorem 4.2 (Oracle inequality). Assume that the loss function ` is η-exp-concave.
Then, the prediction function f̂ given by (4.5) satisfies the oracle inequality

1
notb

∑
i∈Iotb

`(f̂(xi), yi) 6 inf
T⊂T

{ 1
notb

∑
i∈Iotb

`(ŷT (xi), yi) + log 2
η

‖T‖
notb + 1

}
,

where the infimum is over any subtree T ⊂ T and where we recall that ‖T‖ is the
number of nodes in T minus its number of leaves that are also leaves of T .

Theorem 4.2 proves that for a general loss function, the prediction function
of WW is able to perform nearly as well as the best oracle subtree T ⊂ T on
otb samples, with an O(‖T‖/notb) rate which is optimal for model-selection oracle
inequalities [Tsybakov, 2003] (‖T‖ = O(logNT ) with a number of “experts” NT =
|{T : T ⊂ T }| for a well-balanced T ). Let us stress again that, while finding an
oracle argminT⊂T

∑
i∈Iotb

`(ŷT (xi), yi) is computationally infeasible, since it requires
trying out all possible subtrees, WW’s prediction function (4.5) comes at a cost
comparable to that of a standard Random Forest, as explained in Section 4.2.2
above.

The proof of Theorem 4.2 is given in Section 4.6.2 of the supplementary material,
and relies on techniques from PAC-Baysesian theory [Catoni, 2007; McAllester,
1998, 1999]. Compared with Mourtada et al. [2021] about online learning, our
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proof differs significantly: we do not use results specialized to online learning such
as Vovk [1998] nor online-to-batch conversion Cesa-Bianchi et al. [2004]. Note that
Theorem 4.2 does not address the generalization error, since it would require to
study the generalization error of the random forest itself (and of the fully grown tree
T ), which is a topic way beyond the scope of this paper, and still a very difficult
open problem: recent results [Arlot and Genuer, 2014; Genuer, 2012; Mourtada
et al., 2020; Scornet, 2016a,b; Scornet et al., 2015] only study stylized versions of
RF (called purely random forests).

Consequences of Theorem 4.2 are Corollary 4.3 for the log-loss (classification)
and Corollary 4.4 for the least-squares loss (regression).
Corollary 4.3 (Classification). Consider K-class classification (Y = {1, . . . ,K})
and consider the prediction function f̂ given by (4.5), where node predictions are
given by (4.3) with α = 1/2 (WW’s default), where ` is the log-loss and where η = 1.
Then, we have

1
notb

∑
i∈Iotb

`(f̂(xi), yi) 6 inf
T⊂T

{ 1
notb

∑
i∈Iotb

`(gT (xi), yi) + K + 4 log 2− 1
4

‖T‖+ 1
notb

}
,

where gT is any constant function on the leaves of T .
Corollary 4.4 (Regression). Consider regression with Y = [−B,B] for some B >
0 and the prediction function f̂ given by (4.5), where node predictions are given
by (4.2), where ` is the least-squares loss and where η = 1/(8B2). Then, we have

1
notb

∑
i∈Iotb

`(f̂(xi), yi) 6 inf
T⊂T

{ 1
notb

∑
i∈Iotb

`(gT (xi), yi) + 8(log 2)B2 ‖T‖
notb

}
,

where gT is any function constant on the leaves of T .
The proofs of Corollaries 4.3 and 4.4 are given in Section 4.6.2 of the supple-

mentary material. These corollaries motivate the default hyperparameter values of
η, in particular η = 1 for classification.

4.4 Experiments
Our implementation of WildWood is available at the GitHub repository https:
//github.com/pyensemble/wildwood. It is open-sourced under the BSD 3-Clause
license on GitHub. It is a Python package that follows scikit-learn’s API conven-
tions, that is JIT-compiled to machine code using numba [Lam et al., 2015]. Trees
in the forest are grown in parallel using joblib [Joblib Development Team, 2020]
and CPU threads, GPU training will be supported in future updates.

We compare WildWood (denoted WWn for n trees) with several strong baselines
including RFn: scikit-learn’s implementation of Random Forest [Louppe, 2014;
Pedregosa et al., 2011] using n trees; HGB: an histogram-based implementation of
extreme gradient boosting (inspired by LightGBM) from scikit-learn; and several
state-of-the-art and widely adopted extreme gradient boosting libraries including
XGB: XGBoost [Chen and Guestrin, 2016]; LGBM: LightGBM [Ke et al., 2017] and CB:
CatBoost [Dorogush et al., 2018; Prokhorenkova et al., 2017]. We used a 32-cores
server with two Intel Xeon Gold CPUs, two Tesla V100 GPUs and 384GB RAM for
the experiments involving hyperoptimization (Table 4.1) and used a 12-cores Intel
i7 MacBook Pro with 32GB RAM and no GPU to obtain training times achievable
by a “standard user” (Table 4.2). All experiments can be reproduced using Python
scripts on the repository.
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4.4.1 Description of the experiments

We use publicly available and open-source datasets from the UCI repository [Dua
and Graff, 2017], including small datasets (hundreds of rows) and large datasets
(millions of rows), their main characteristics are given in Table 4.5 together with
URLs in Table 4.6, see the supplementary material. Each dataset is randomly
split into a training set (70%) and a test set (30%). We specify which features
are categorical to algorithms that natively support it (HGB, LGBM, CB and WWn) and
simply integer-encode them, while we use one-hot encoding for other algorithms
(RFn, XGB).

For each algorithm and dataset, hyperoptimization is performed as follows: from
the training set, we use 4/5 for training and 1/5 for validation and do 50 steps
of sequential optimization using the Tree Parzen Estimator implemented in the
hyperopt library [Bergstra et al., 2015]. More details about hyperoptimization are
provided in Appendix 4.7.2 of the supplementary material. Then, we refit on the
whole training set with the best hyperparameters and report scores on the test set.
This is performed 5 times in order to report standard deviations.

We use the area under the ROC curve (AUC), for K-class datasets with K > 2
we average the AUC of each class versus the rest. This leads to the test AUC
scores displayed in Table 4.1 (the same scores with standard deviations are available
in Table 4.3 of the supplementary material). We report also in Table 4.2 (see
Table 4.4 from supplementary material for standard deviations) the test AUC scores
obtained with default hyperparameters of all algorithms on the 5 largest considered
datasets together with their training times (timings can vary by several orders of
magnitude with varying hyperparameters for EGB libraries, as observed by the
timing differences between Figure 4.3 and Table 4.2).

Table 4.1 – Test AUC of all algorithms after hyperoptimization on the considered datasets.
Standard-deviations are reported in Table 4.3 from the supplementary material. We observe
that WW has better (or identical in some cases) performances than RF on all datasets and
that it is close to that of EGB libraries (bold is for best EGB performance, underline for
best RFn or WWn performance).

XGB LGBM CB HGB RF10 RF100 WW10 WW100

adult 0.930 0.931 0.927 0.930 0.916 0.919 0.918 0.919
bank 0.933 0.935 0.925 0.930 0.917 0.929 0.924 0.931
breastcancer 0.991 0.993 0.987 0.994 0.974 0.978 0.992 0.992
car 0.999 1.000 1.000 1.000 0.996 0.996 0.997 0.998
covtype 0.999 0.999 0.998 0.999 0.996 0.998 0.996 0.998
default-cb 0.780 0.783 0.780 0.779 0.748 0.774 0.773 0.778
higgs 0.853 0.857 0.847 0.853 0.812 0.834 0.818 0.835
internet 0.934 0.910 0.938 0.911 0.841 0.911 0.923 0.928
kddcup 1.000 1.000 1.000 1.000 0.997 0.998 1.000 1.000
kick 0.777 0.770 0.777 0.771 0.736 0.752 0.756 0.763
letter 1.000 1.000 1.000 1.000 0.997 0.999 0.996 0.999
satimage 0.991 0.991 0.991 0.987 0.980 0.989 0.983 0.991
sensorless 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
spambase 0.990 0.990 0.987 0.986 0.980 0.986 0.983 0.987
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4.4.2 Discussion of experiments results

We observe in Table 4.1 that EGB algorithms, when hyperoptimized, lead to the
best performances over the considered datasets compared with RF algorithms, and
we observe that WW always improves the performance of RF, at the exception of
few datasets for which the performance is identical. When using default hyperpa-
rameters for all algorithms, we observe in Table 4.2 that the test AUC scores can
decrease significantly for EGB libraries while RF algorithms seem more stable, and
that there is no clear best performing algorithm in this case.

The results on both tables show that WW is competitive with respect to all
baselines both in terms of performance and computational times: it manages to
always reach at least comparable performance with the best algorithms despite
only using 10 trees as a default. In this respect, WW maintains high scores at a
lower computational cost.

Table 4.2 – Training times (seconds) of all algorithms with their default hyperparameters
(no hyperoptimization) on the 5 largest considered datasets and test AUC corresponding
to these training times. Test AUC scores are worse than that of Table 4.1, since no hy-
peroptimization is used. WW, which uses only 10 trees here (default number of trees), is
almost always the fastest algorithm, for performances comparable to that of all baselines
(bold is for best EGB training time or performance, underline for best RF or WW training
time or performance). Standard deviations are reported in Table 4.4 of the supplementary
material.

Training time (seconds) Test AUC

XGB LGBM CB HGB RF WW XGB LGBM CB HGB RF WW

covtype 10 3 120 14 21 3 0.986 0.978 0.989 0.960 0.998 0.979
higgs 36 30 653 85 1389 179 0.823 0.812 0.840 0.812 0.838 0.813
internet 9 4 188 8 0.4 0.3 0.918 0.828 0.910 0.500 0.862 0.889
kddcup 175 41 2193 31 208 12 1.000 0.638 0.988 0.740 0.998 1.000
kick 7 0.4 50 0.7 31 5 0.768 0.757 0.781 0.773 0.747 0.751

4.5 Conclusion

We introduced WildWood, a new Random Forest algorithm for batch supervised
learning. Tree predictions in WildWood are aggregation with exponential weights
of the predictions of all subtrees, with weights computed on bootstrap out-of-the-
bag samples. This leads to improved predictions in each individual tree, at a small
computational cost, since WildWood’s prediction complexity is similar to that of
a standard Random Forest. Moreover, thanks to the histogram strategy, Wild-
Wood’s implementation is competitive with strong baselines including popular ex-
treme boosting libraries, both in terms of performance and training times. Note
also that WildWood has few hyperparameters to tune and that the performances
obtained with default hyperparameters are usually good enough in our experiments.

WildWood’s implementation is still evolving and many improvements coming
with future updates are planned, including the computation of feature importance,
GPU training, distributed training (we only support single-machine training for
now), among other enhancements that will further improve performances and ac-
celerate computations. Room for improvement in WildWood comes from the fact
that the overall forest prediction is a simple arithmetic mean of each tree prediction,
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while we could perform also exponentially weighted aggregation between trees. Fu-
ture works include a WildWood-based implementation of isolation-forest [Liu et al.,
2008], using the same subtrees aggregation mechanism with the log loss for density
estimation, to propose a new algorithm for outliers detection.

4.6 Appendix: technical proofs

4.6.1 Proof of Theorem 4.1 and construction of Algorithms 3 and 4

The expression in Equation (4.5) involves sums over all subtrees T of the fully grown
tree T (involving an exponential in the number of leaves of T ). However, it can be
computed efficiently because of the specific choice of the prior π. More precisely,
we will use the following lemma [Helmbold and Schapire, 1997, Lemma 1] several
times to efficiently compute sums of products. Let us recall that nodes(T ) stands
for the set of nodes of T .
Lemma 4.5. Let g : nodes(T ) → R be an arbitrary function and define G :
nodes(T )→ R as

G(v) =
∑
T⊂Tv

2−‖T‖
∏

v′∈leaves(T )
g(v′), (4.8)

where the sum over T ⊂ Tv means the sum over all subtrees T of T rooted at v.
Then, G(v) can be computed recursively as follows:

G(v) =
{
g(v) if v ∈ leaves(T )
1
2g(v) + 1

2G(v0)G(v1) otherwise,

for each node v ∈ nodes(T ).
For the sake of completeness, we include a proof of this statement.

Proof. First, let us notice that the case v ∈ leaves(T ) is straightforward since there
is only one pruning T of Tv which satisfies ‖T‖ = 0 (recall that ‖T‖ is the number
of internal nodes and leaves in T minus the number of leaves in T that are also
leaves of Tv). For the second case, we can expand G(v) by taking into account the
pruning which only leaves v as a leaf, the rest of the prunings can be expressed
through pairs of prunings T0 and T1 of Tv0 and Tv1 respectively. Moreover, it can
be shown that such a pruning T satisfies ‖T‖ = 1 + ‖T0‖ + ‖T1‖, thus we get the
following expansion

G(v) = 1
2g(v) +

∑
T0⊂Tv0

∑
T1⊂Tv1

2−(1+‖T0‖+‖T1‖)
∏

v′∈T0

g(v0v′)
∏

v′′∈T1

g(v1v′′)

= 1
2g(v) + 1

2
( ∑
T0⊂Tv0

2−‖T0‖
∏

v′∈T0

g(v0v′)
)
·
( ∑
T1⊂Tv1

2−‖T1‖
∏

v′′∈T1

g(v1v′′)
)

= 1
2g(v) + 1

2G(v0)G(v1).

This concludes the proof of Lemma 4.5.
Let us introduce wT = π(T ) exp(−ηLT ) for any T ⊂ T , so that Equation (4.5)

writes
f̂(x) =

∑
T⊂T wT ŷT (x)∑

T⊂T wT
, (4.9)
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where the sums hold over all the subtrees T of T rooted at root (the root of the
full tree T ). We will show how to efficiently compute and update the numerator
and denominator in Equation (4.9). Note that wT may be written as

wT = π(T ) exp(−ηLT )

= 2−‖T‖ exp
(
− η

∑
i∈Iotb

`(ŷvT (xi), yi)
)

= 2−‖T‖ exp
(
− η

∑
v∈leaves(T )

∑
i∈Iotb : xi∈Cv

`(ŷvT (xi), yi)
)

(4.10)

= 2−‖T‖ exp
(
− η

∑
v∈leaves(T )

∑
i∈Iotb : xi∈Cv

`(ŷv, yi)
)

(4.11)

= 2−‖T‖ exp
(
− η

∑
v∈leaves(T )

Lv

)
= 2−‖T‖

∏
v∈leaves(T )

wv, (4.12)

where we recall that

Lv =
∑

i∈Iotb : xi∈Cv

`(ŷv, yi) and wv = exp(−ηLv).

Equality (4.10) comes from the fact that the set of cells {Cv : v ∈ leaves(T )} is
a partition of C by construction, and that the stopping criterion used to build T
ensures that each leaf node in leaves(T ) contains at least one sample from Iotb (see
Section 4.2.1). Equality (4.11) comes from the fact that the prediction of a node is
constant and equal to ŷv for any x ∈ Cv.

Denominator of Equation (4.9). For each node v ∈ nodes(T ), denote

wden
v =

∑
T⊂Tv

2−‖T‖
∏

v′∈leaves(T )
wv′ , (4.13)

where once again the sum over T ⊂ Tv means the sum over all subtrees T of T
rooted at v. We have that (4.12) entails

wden
root =

∑
T⊂Troot

2−‖T‖
∏

v∈leaves(T )
wv =

∑
T⊂Troot

wT =
∑
T⊂T

wT . (4.14)

So, we can compute recursively wden
root very efficiently, using a recursion on the

weights wden
v using Lemma 4.5 with g(v) = wv. This leads to the recursion stated

in Theorem 4.1, see Equation (4.7).
Now, we can exploit the fact that decision trees are built in a depth-first fashion

in WildWood: all the nodes v ∈ T are stored in a “flat” array, and by construction
both the child nodes v0 and v1 have indexes that are larger than the one of v.
So, we can simply loop over the array of nodes in reverse order, and compute
wden

v = wv if v ∈ leaves(T ) and wden
v = 1

2wv + 1
2w

den
v0 w

den
v1 otherwise: we are

guaranteed to have computed wden
v0 and wden

v1 before computing wden
v . This algorithm

is described in Algorithm 3. Since these computations involve a large number
of products with exponentiated numbers, it typically leads to strong over- and
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under-flows: we describe in Algorithm 3 a version of this algorithm which works
recursively over the logarithms of the weights. At the end of this loop, we end up at
v = root and have computed wden

root = ∑
T⊂T wT with a very efficient O(|nodes(T )|)

complexity. Note also that it is sufficient to store both wv and wden
v for all v ∈ T ,

which makes for a O(|nodes(T )|) memory consumption.

Numerator of Equation (4.9). The numerator of Equation (4.9) almost follows
the exact same argument as the denominator, but since it depends on the input
vector x ∈ C of features for which we want to produce a prediction, it is performed
at inference time. Recall that path(x) is the sequence of nodes that leads to the
leaf vT (x) containing x ∈ C and define, for any v ∈ nodes(T ), ŵv(x) = wvŷv(x) if
v ∈ path(x), and ŵv(x) = wv otherwise. We have∑

T⊂T
wT ŷT (x) =

∑
T⊂Troot

wT ŷvT (x)

=
∑

T⊂Troot

2−‖T‖
∏

v∈leaves(T )
wvŷvT (x) (4.15)

=
∑

T⊂Troot

2−‖T‖
∏

v∈leaves(T )
ŵv(x). (4.16)

Note that (4.15) comes from (4.12) while (4.16) comes from the definition of ŵv(x)
(note that a single term from the product over v ∈ leaves(T ) corresponds to v =
vT (x) since {Cv : v ∈ leaves(T )} is a partition of C). We are now in position to
use again Lemma 4.5 with g(v) = ŵv(x). Defining

wnum
v (x) =

∑
T⊂Tv

2−‖T‖
∏

v′∈leaves(T )
ŵv′(x) ,

we can conclude that
wnum

root(x) =
∑
T⊂T

wT ŷT (x) (4.17)

and that the following recurrence holds:

wnum
v (x) =

{
ŵv(x) if v ∈ leaves(T )
1
2 ŵv(x) + 1

2w
num
v0 (x)wnum

v1 (x) otherwise.
(4.18)

This recurrence allows to compute wnum
v (x) from ŵv(x), but note that a direct use

of this formula would lead to a complexity O(|nodes(T )|) to produce a prediction
for a single input x ∈ C. It turns out can we can do much better than that.

Indeed, whenever v /∈ path(x), we have by definition that ŵv(x) = wv and
that ŵv′(x) = wv′ for any descendant v′ of v, which entails by induction that
wnum

v (x) = wden
v for any v /∈ path(x). Therefore, we only need to explain how to

compute wnum
v (x) for v ∈ path(x). This is achieved recursively, thanks to (4.18),

starting at the leaf vT (x) and going up in the tree to root:

wnum
v (x) =

wvŷv if v = vT (x)
1
2wvŷv + 1

2w
den
v(1−a)w

num
va (x) otherwise, where a ∈ {0, 1} is s.t. va ∈ path(x).

(4.19)
Let us explain where this comes from: firstly, one has obviously that leaves(T ) ∩
path(x) = {vT (x)}, so that wnum

v (x) = g(v) = ŵv(x) = wvŷv(x) for v = vT (x).
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Secondly, we go up in the tree along path(x) and use again (4.18): whenever
v ∈ intnodes(T ) and va ∈ path(x) for a ∈ {0, 1}, we have wnum

v(1−a)(x) = wden
v(1−a)

since v(1 − a) /∈ path(x). This recursion has a complexity O(|path(x)|) where
|path(x)| is the number of nodes in path(x), and is typically orders of magni-
tude smaller than |nodes(T )| (in a well-balanced binary tree, one has the relation
|path(x)| = O(log2(|nodes(T )|))). Moreover, we observe that the recursions used
in (4.7) and (4.19) only need to save both wv and wden

v for any v ∈ nodes(T ).
Finally, we have using (4.14) and (4.17) that

f̂(x) =
∑
T⊂T wT ŷT (x)∑

T⊂T wT
= wnum

root(x)
wden

root
=: f̂root(x),

and we want to compute f̂root(x) recursively from f̂v(x) where v ∈ path(x). First,
whenever v = vT (x) we have

f̂v(x) = wnum
v (x)
wden

v
= wvŷv

wv
= ŷv,

while for v 6= vT (x) and v ∈ path(x), we write

f̂v(x) = wnum
v (x)
wden

v
=

1
2wvŷv + 1

2w
den
v(1−a)w

num
va (x)

wden
v

(4.20)

= 1
2
wv
wden

v
ŷv + 1

2
wden

v(1−a)w
den
va

wden
v

wnum
va (x)
wden

va
(4.21)

= 1
2
wv
wden

v
ŷv +

(
1− 1

2
wv
wden

v

)
f̂va(x), (4.22)

where (4.20) comes from (4.19) while (4.22) comes from (4.7). This proves the
recursion stated in Equation (4.6) from Theorem 4.1, and to Algorithm 4. This
concludes the proof of Theorem 4.1. �

4.6.2 Proofs of the results from Section 4.3

The proof of Theorem 4.2 is partly inspired from the proof of Theorem 2 in Dalalyan
and Tsybakov [2008], that we generalize to exp-concave losses, while only least-
squares regression is considered therein. Let E be a measurable space and P,Q be
probability measures on it. The Kullback-Leibler divergence between P and Q is
defined by

KL(P,Q) =
∫
E

log
(dP

dQ
)
dP

whenever P is absolutely continuous with respect to Q and equal to +∞ otherwise.
Also, if h : E → R is a measurable function such that

∫
E hdP is well-defined on

R ∪ {−∞,+∞}, we introduce

Ph := h∫
E hdP · P,

the probability measure on E with density h/
∫
hdP with respect to P . A classical

result is the Donsker-Varadhan variational formula [Donsker and Varadhan, 1976],
which is at the core of the proofs of many PAC-Bayesian theorems [Catoni, 2007;
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McAllester, 1999] and that we use here as well in the proof of Theorem 4.2. Its
states that

log
( ∫

E
exp(h)dQ

)
+ KL(P,Q)−

∫
hdP = KL(P,Qexp(h)) (4.23)

holds for any probability measures P and Q on E and any measurable function
h : E → R. This entails in particular that

log
( ∫

E
exp(h)dQ

)
= sup

P

{∫
hdP −KL(P,Q)

}
,

where the supremum is over all probability measures on E, and where the supremum
is achieved for P = Qexp(h) whenever the term on the left-hand side is finite.
Proof of Theorem 4.2. Recall that the otb loss of a subtree T ⊂ T is given by

LT =
∑
i∈Iotb

`(ŷT (xi), yi)

and let us introduce
pT = π(T ) exp(−ηLT )∑

T ′ π(T ′) exp(−ηLT ′)
(4.24)

for any subtree T ⊂ T . First, we use the fact that ` is a η-exp-concave loss function,
hence η-mixable, see Section 3.3 from Cesa-Bianchi and Lugosi [2006], which entails,
since pT is a probability measure over the set of all subtrees T ⊂ T , that

`
(∑

T

pT ŷT (xi), yi
)
6 −1

η
log

(∑
T

pT exp(−η`(ŷT (xi), yi))
)
,

where the sums over T are over all subtrees T ⊂ T . Now, summing this inequality
over i ∈ Iotb and using the convexity of the log-sum-exp function leads to∑

i∈Iotb

`
(∑

T

pT ŷT (xi), yi
)
6 −1

η

∑
i∈Iotb

log
(∑

T

pT exp(−η`(ŷT (xi), yi))
)

6 −notb

η
log

(∑
T

pT exp
(
− η

notb

∑
i∈Iotb

`(ŷT (xi), yi)
))

= −notb

η
log

(∑
T

pT exp
(
− η

notb
LT
))
.

By plugging the definition of pT into the previous expression, and by introducing
ρ(T ) := ηLT /notb, we obtain

S

notb
:= 1

notb

∑
i∈Iotb

`(f̂(xi), yi)

6− 1
η

log
(∑

T

π(T ) exp
(
− (notb + 1)ρ(T )

))
+ 1
η

log
(∑

T

π(T ) exp
(
− notbρ(T )

))
.

The Hölder inequality implies that∑
T

π(T ) exp
(
− notbρ(T )

)
6
(∑

T

π(T ) exp
(
− (notb + 1)ρ(T )

))notb/(notb+1)
,

thus
S

notb
6 − 1

η(notb + 1) log
(∑

T

π(T ) exp
(
− (notb + 1)ρ(T )

))
.
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Using (4.23) with h(T ) = −(notb + 1)ρ(T ) and Q = π, we have

log
(∑

T

π(T ) exp
(
− (notb + 1)ρ(T )

))
= −

∑
T

P (T )(notb + 1)ρ(T )−KL(P, π) + KL(P, πexp(h))

for any probability measure P over the set of subtrees of T . This leads to

1
notb

∑
i∈Iotb

`(f̂(xi), yi) 6
1

notb

∑
T

P (T )LT + 1
η(notb + 1)KL(P, π)

for any P , since KL(P, πexp(h)) > 0. So for the particular choice P = δT (the Dirac
mass at T ) for any subtree T ⊂ T , we have

1
notb

∑
i∈Iotb

`(f̂(xi), yi) 6
1

notb
LT + 1

η(notb + 1) log
(
π(T )−1)

6
1

notb
LT + log 2

η

‖T‖
notb + 1 ,

which concludes the proof of Theorem 4.2.
The proof of Corollary 4.3 requires the next Lemma.

Lemma 4.6. Consider classification with Y = {1, . . . ,K} and a node v ∈ nodes(T ).
Denote nv(k) the number of samples of class k in node v. We consider the Krichevsky-
Trofimov estimator

ŷ(k) = nv(k) + 1/2
nv +K/2

where nv = ∑K
k=1 nv(k) and the log loss `(y′, y) = − log y′(y). Then, the following

inequality holds ∑
i

`(ŷ, yi)− inf
p

∑
i

`(p, yi) 6
K − 1

2 .

Proof. We know that the optimal p is given by pk = nv(k)/nv. Indeed, it is the
solution to the following constrained convex optimization problem

min
p
−

K∑
k=1

nv(k) log pk subject to
K∑
k=1

pk = 1,

where we consider non-negativity to be already enforced by the objective and im-
posing pk 6 1 is redundant with the constraint ∑K

k=1 pk = 1. We can write the
Lagrangian function as

L(p, λ) = −
K∑
k=1

nv(k) log pk + λ
( K∑
k=1

pk − 1
)

and one can check the KKT conditions when taking pk = nv(k)/nv and λ = nv.
Since we are dealing with a convex problem with linear constraints, this is a sufficient

109



CHAPTER 4. WILDWOOD: A NEW RANDOM FOREST ALGORITHM

optimality condition. Straightforward computations give

∑
i

`(ŷ, yi)− inf
p

∑
i

`(p, yi) =
K∑
k=1
−nv(k) log(ŷ(k))−

K∑
k=1
−nv(k) log pk

=
K∑
k=1
−nv(k) log nv(k) + 1/2

nv +K/2 −
K∑
k=1
−nv(k) log nv(k)

nv

=
K∑
k=1
−nv(k)

(
log nv

nv +K/2 + log nv(k) + 1/2
nv

− log nv(k)
nv

)

= −nv log nv
nv +K/2 +

K∑
k=1
−nv(k)

(
log nv(k) + 1/2

nv
− log nv(k)

nv

)

= nv log nv +K/2
nv

+
K∑
k=1

nv(k) log nv(k)
nv(k) + 1/2 .

Now, using the concavity of the logarithm gives

∑
i

`(ŷ, yi)− inf
p

∑
i

`(p, yi) 6 nv log nv +K/2
nv

+ nv log
( K∑
k=1

nv(k)
nv

nv(k)
nv(k) + 1/2

)
,

and the fact that x 7→ x/(x+ 1/2) is non-decreasing and nv(k) 6 nv leads to

∑
i

`(ŷ, yi)− inf
p

∑
i

`(p, yi) 6 nv log nv +K/2
nv

+ nv log nv
nv + 1/2

= nv log nv + 1/2 + (K − 1)/2
nv + 1/2

= nv log
(
1 + K − 1

2nv + 1
)
6
K − 1

2 .

This concludes the proof of Lemma 4.6.
Proof of Corollary 4.3. The log-loss is trivially 1-exp-concave, so that we can choose
η = 1. Following Theorem 4.2, it remains to bound the regret of the tree forecaster
T with respect to the optimal labeling of its leaves. For classification and the log
loss, we use Lemma 4.6 to obtain

∑
i∈Iotb:xi∈Cv

`(ŷT (xi), yi)− inf
p

∑
i∈Iotb:xi∈Cv

`(p, yi) 6
K − 1

2

for any subtree T and any v ∈ leaves(T ). Now, summing over v ∈ leaves(T ), of
cardinality (‖T‖+ 1)/2, leads to

∑
i∈Iotb

`(f̂(xi), yi)−
∑
i∈Iotb

`(gT (xi), yi) 6 ‖T‖ log 2 + (K − 1)(‖T‖+ 1)
4 ,

which concludes the proof of Corollary 4.3.
Proof of Corollary 4.4. The square loss is 1/(8B2)-exp-concave on [−B,B], see Cesa-
Bianchi and Lugosi [2006], so we can choose η = 1/(8B2). Following Theorem 4.2,
it remains to bound the regret of the tree forecaster T with respect to the optimal
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labeling of its leaves. For regression with the least-squares loss, since we use the
empirical mean forecaster (4.2), we have∑

i∈Iotb:xi∈Cv

`(ŷT (xi), yi)− inf
b

∑
i∈Iotb:xi∈Cv

`(b, yi) = 0

for any subtree T and any leaf v ∈ leaves(T ). The rest of the proof follows that of
Corollary 4.3.

4.7 Appendix: experiments

4.7.1 Supplementary details on experiments

We report in Table 4.3 the same test AUC scores as in Table 4.1 of all algorithms
after hyperoptimization on the considered datasets. Standard-deviations displayed
between parentheses are computed from 5 trainings with different random seeds.
We observe that WW has better (or identical in some cases) performances than RF
on all datasets and that it is close to that of EGB libraries (bold is for best EGB
performance, underline for best RFn or WWn performance).

We report also in Table 4.4 the same training time and test AUC as in Table 4.2,
with standard-deviations displayed between parentheses computed from 5 trainings
with different random seeds, all with default hyperparameters of each algorithm.
We observe that WW is almost always the fastest algorithm, for performances com-
parable to ones of all baselines (bold is for best EGB training time or performance,
underline for best RF or WW training time or performance).

4.7.2 Supplementary details about hyperparameters tuning

In this Section, we provide extra information about hyperparameters optimization.
For XGBoost, LightGBM and CatBoost, with all other hyperparameters fixed, we
use early stopping by monitoring the log loss on the validation set, the maximum
number of boosting iterations being set at 5, 000. The best number of iterations
is used together with other best hyperparameters to refit over the whole training
set before evaluation on the test set. For scikit-learn’s Random Forest and
WildWood, we report results both for 10 and 100 trees, note that the default choice
is 10 for WildWood (since subtrees aggregation allows to use fewer trees than RF)
while default is 100 in scikit-learn. We list the hyperparameters search space of
each algorithm below.

XGBoost

• eta: log-uniform distribution [e−7, 1];

• max_depth: discrete uniform distribution [2, 10];

• subsample: uniform [0.5, 1];

• colsample_bytree: uniform [0.5, 1];

• colsample_bylevel: uniform [0.5, 1];

• min_child_weight: log-uniform distribution [e−16, e5];
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Table 4.3 – The same test AUC scores as in Table 4.1 of all algorithms after hyperoptimiza-
tion on the considered datasets. Standard-deviations displayed between parentheses are
computed from 5 trainings with different random seeds. We observe that WW has better
(or identical in some cases) performances than RF on all datasets and that it is close to
that of EGB libraries (bold is for best EGB performance, underline for best RFn or WWn
performance).
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Table 4.4 – The same training time table as in Table 4.2, as average over 5 runs, with stan-
dard deviation computed from 5 runs reported between parenthesis, for default parameters
for each model. Top: training time in seconds; bottom: test AUC. We observe that WW is
almost always the fastest algorithm, for performances comparable to ones of all baselines
(bold is for best EGB training time or performance, underline for best RF or WW training
time or performance).

Training time (seconds)

XGB LGBM CB HGB RF WW

covtype 10 (0.6) 3 (0.1) 120 (9.3) 14 (7.7) 21 (0.9) 3 (0.1)
higgs 36 (0.6) 30 (1.4) 653 (8.7) 85 (0.2) 1389 (11.1) 179 (4.5)
internet 9 (0.7) 4 (0.1) 188 (2.4) 8 (0.3) 0.4 (0.0) 0.3 (0.0)
kddcup 175 (5.1) 41 (2.6) 2193 (13.2) 31 (0.2) 208 (3.8) 12 (0.8)
kick 7 (0.2) 0.4 (0.0) 50 (0.7) 0.7 (0.1) 31 (0.1) 5 (0.0)

Test AUC

XGB LGBM CB HGB RF WW

covtype 0.986 (2e-04) 0.978 (2e-03) 0.989 (9e-05) 0.960 (1e-02) 0.998 (6e-05) 0.979 (5e-04)
higgs 0.823 (3e-04) 0.812 (2e-04) 0.840 (8e-05) 0.812 (2e-04) 0.838 (9e-05) 0.813 (1e-04)
internet 0.918 (2e-05) 0.828 (0e+00) 0.910 (8e-03) 0.500 (0e+00) 0.862 (3e-03) 0.889 (7e-03)
kddcup 1.000 (3e-07) 0.638 (3e-02) 0.988 (7e-03) 0.740 (6e-02) 0.998 (2e-03) 1.000 (3e-06)
kick 0.768 (4e-04) 0.757 (0e+00) 0.781 (3e-04) 0.773 (2e-03) 0.747 (2e-03) 0.751 (2e-03)

• alpha: 0 with probability 0.5, and log-uniform distribution [e−16, e2] with prob-
ability 0.5;

• lambda: 0 with probability 0.5, and log-uniform distribution [e−16, e2] with
probability 0.5;

• gamma: 0 with probability 0.5, and log-uniform distribution [e−16, e2] with prob-
ability 0.5;

LightGBM

• learning_rate: log-uniform distribution [e−7, 1];

• num_leaves: discrete log-uniform distribution [1, e7];

• feature_fraction: uniform [0.5, 1];

• bagging_fraction: uniform [0.5, 1];

• min_data_in_leaf: discrete log-uniform distribution [1, e6];

• min_sum_hessian_in_leaf: log-uniform distribution [e−16, e5];

• lambda_l1: 0 with probability 0.5, and log-uniform distribution [e−16, e2] with
probability 0.5;

• lambda_l2: 0 with probability 0.5, and log-uniform distribution [e−16, e2] with
probability 0.5;

CatBoost

• learning_rate: log-uniform distribution [e−7, 1];

• random_strength: discrete uniform distribution over {1, 20};
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• one_hot_max_size: discrete uniform distribution over {0, 25};

• l2_leaf_reg: log-uniform distribution [1, 10];

• bagging_temperature: uniform [0, 1].

HistGradientBoosting

• learning_rate: log-uniform distribution [e−4, 1];

• max_leaf_nodes: discrete log-uniform distribution [1, e7];

• min_samples_leaf: discrete log-uniform distribution [1, e6];

• l2_regularization: 0 with probability 0.5, and log-uniform distribution [e−16, e2]
with probability 0.5;

RandomForest

• max_features: None with probability 0.5, and sqrt with probability 0.5;

• min_samples_leaf: uniform over {1, 5, 10} and we set min_samples_split =
2× min_samples_leaf;

WildWood

• multiclass: multinomial with probability 0.5, and ovr with probability 0.5;

• min_samples_leaf: uniform over {1, 5, 10} and we set min_samples_split =
2× min_samples_leaf;

• step: log-uniform distribution [e−3, e6];

• dirichlet: log-uniform distribution [e−7, e2];

• cat_split_strategy: binary with probability 0.5, and all with probability
0.5;

• max_features: None with probability 0.5, and sqrt with probability 0.5.

4.7.3 Datasets

The main characteristics of the datasets used in the paper are summarized in Ta-
ble 4.5. We provide in Table 4.6 the URL of all the datasets used, most of them
are from the UCI machine learning repository Dua and Graff [2017].

4.7.4 Sensitivity of hyperparameters of Wildwood

In Table 4.7 we illustrate the effects of hyperparameters on WW’s performance on
a few datasets, measured by the test AUC. We can observe in this table that it is
only weakly affected by different combinations of hyperparameters.
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Dataset # Samples # Features # Categorical features # Classes Gini

adult 48,842 14 8 2 0.36
bank 45,211 16 10 2 0.21
breastcancer 569 30 0 2 0.47
car 1,728 6 6 4 0.46
covtype 581,012 54 0 7 0.62
default_cb 30,000 23 3 2 0.34
higgs 11,000,000 28 0 2 0.50
internet 10,108 70 70 46 0.88
kddcup99 4,898,431 41 7 23 0.58
kick 72,983 32 18 2 0.22
letter 20,000 16 0 26 0.96
satimage 5,104 36 0 6 0.81
sensorless 58,509 48 0 11 0.91
spambase 4,601 57 0 2 0.48

Table 4.5 – Main characteristics of the datasets used in experiments, including number of
samples, number of features, number of categorical features, number of classes and the Gini
index of the class distribution on the whole datasets (rescaled between 0 and 1), in order
to quantify class unbalancing.

Dataset URL

adult https://archive.ics.uci.edu/ml/datasets/Adult
bank https://archive.ics.uci.edu/ml/datasets/bank+marketing
breastcancer https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
car https://archive.ics.uci.edu/ml/datasets/car+evaluation
covtype https://archive.ics.uci.edu/ml/datasets/covertype
default_cb https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
higgs https://archive.ics.uci.edu/ml/datasets/HIGGS
internet https://kdd.ics.uci.edu/databases/internet_usage/internet_usage.html
kddcup99 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
kick https://www.openml.org/d/41162
letter https://archive.ics.uci.edu/ml/datasets/letter+recognition
satimage https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
sensorless https://archive.ics.uci.edu/ml/datasets/dataset+for+sensorless+drive+diagnosis
spambase https://archive.ics.uci.edu/ml/datasets/spambase

Table 4.6 – The URLs of all the datasets used in the paper, giving direct download links
and supplementary details.
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Table 4.7 – Areas under the ROC curves (AUC) obtained on test samples with WildWood
(using 100 trees in the forest) on the adult, bank and car datasets with combinations
of several hyper parameters. We observe that WildWood’s performance does not vary
significantly with respect to these hyperparameters.

adult
nmin-leaf α η AUC

1 0.1 0.1 0.913
1 0.1 1.0 0.916
1 0.1 10.0 0.918
1 0.5 0.1 0.913
1 0.5 1.0 0.917
1 0.5 10.0 0.919
1 2.5 0.1 0.913
1 2.5 1.0 0.917
1 2.5 10.0 0.919
5 0.1 0.1 0.913
5 0.1 1.0 0.916
5 0.1 10.0 0.918
5 0.5 0.1 0.913
5 0.5 1.0 0.916
5 0.5 10.0 0.918
5 2.5 0.1 0.913
5 2.5 1.0 0.917
5 2.5 10.0 0.918

10 0.1 0.1 0.913
10 0.1 1.0 0.916
10 0.1 10.0 0.917
10 0.5 0.1 0.913
10 0.5 1.0 0.916
10 0.5 10.0 0.917
10 2.5 0.1 0.913
10 2.5 1.0 0.916
10 2.5 10.0 0.918

bank
nmin-leaf α η AUC

1 0.1 0.1 0.919
1 0.1 1.0 0.926
1 0.1 10.0 0.929
1 0.5 0.1 0.920
1 0.5 1.0 0.927
1 0.5 10.0 0.929
1 2.5 0.1 0.921
1 2.5 1.0 0.927
1 2.5 10.0 0.929
5 0.1 0.1 0.919
5 0.1 1.0 0.926
5 0.1 10.0 0.928
5 0.5 0.1 0.920
5 0.5 1.0 0.926
5 0.5 10.0 0.928
5 2.5 0.1 0.921
5 2.5 1.0 0.927
5 2.5 10.0 0.928

10 0.1 0.1 0.920
10 0.1 1.0 0.926
10 0.1 10.0 0.927
10 0.5 0.1 0.920
10 0.5 1.0 0.926
10 0.5 10.0 0.927
10 2.5 0.1 0.920
10 2.5 1.0 0.926
10 2.5 10.0 0.928

car
nmin-leaf α η AUC

1 0.1 0.1 0.992
1 0.1 1.0 0.995
1 0.1 10.0 0.995
1 0.5 0.1 0.992
1 0.5 1.0 0.994
1 0.5 10.0 0.995
1 2.5 0.1 0.990
1 2.5 1.0 0.992
1 2.5 10.0 0.993
5 0.1 0.1 0.990
5 0.1 1.0 0.992
5 0.1 10.0 0.992
5 0.5 0.1 0.990
5 0.5 1.0 0.992
5 0.5 10.0 0.992
5 2.5 0.1 0.987
5 2.5 1.0 0.991
5 2.5 10.0 0.991

10 0.1 0.1 0.983
10 0.1 1.0 0.987
10 0.1 10.0 0.987
10 0.5 0.1 0.983
10 0.5 1.0 0.987
10 0.5 10.0 0.987
10 2.5 0.1 0.981
10 2.5 1.0 0.985
10 2.5 10.0 0.986

4.7.5 Supplementary details about assets used (versions and li-
censes)

The versions and licenses of the libraries used in our experiments are:

• catboost (0.25.1), Apache License 2.0

• hyperopt (0.2.5), license: https://github.com/hyperopt/hyperopt/blob/
master/LICENSE.txt

• joblib (0.17), BSD-3-Clause License

• lightgbm (3.2.1), MIT License

• matplotlib (3.3.1), license: https://github.com/matplotlib/matplotlib/
blob/master/LICENSE/LICENSE

• numba (0.52), BSD 2-Clause "Simplified" License

• numpy (1.19.2), BSD-3-Clause License

• pandas (1.2.4), BSD-3-Clause License

• python (3.7.9), Python Software Fundation Licence version 2

• scikit-learn (0.24.2), BSD 3-Clause License

• scipy (1.5.4), BSD 3-Clause License

• seaborn (0.11), BSD-3-Clause License

• xgboost (1.4.1), Apache License 2.0

All the datasets used are publicly accessible and have no copyright restrictions.
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Chapter 5

Online logistic regression:
towards an efficient algorithm
with better regret? 1

“ 路漫漫其修远兮，吾将上下而求索。
On and on stretched my road, long it was and far, I
would go high and go low in this search that I made. ”

Qu Yuan (translated by Stephen Owen)
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CHAPTER 5. ONLINE LOGISTIC REGRESSION

5.1 Introduction
We consider online logistic regression: an online learning problem with binary
labels and logistic loss. Under this setting, at each time step t = 1, 2, . . ., an
agent successively makes predictions ŷt, based on all the previous observations
((x1, y1), . . . , (xt−1, yt−1)) and the features xt of time t. Once the true binary label
yt ∈ {−1,+1} is unveiled, the agent suffers a logistic loss

`(ŷt, yt) := log (1 + exp (−ŷtyt))) .

The quality of the successive predictions (ŷt)t is assessed by the regret, defined as
the excess loss induced by (ŷt)t versus an algorithm that uses a logistic model with
the best possible fixed parameter θ ∈ Θ in hindsight,

Regretn :=
n∑
t=1

`(ŷt, yt)− inf
θ∈Θ

n∑
t=1

`(θ>xt, yt)

where the space of parameters Θ ⊂ Rd is called comparison class, and n ∈ N denotes
the number of total rounds.

Online logistic regression falls into the supervised online learning setting, where
a learning algorithm A takes as input at time t all the previous observations St−1 =
((x1, y1), . . . , (xt−1, yt−1)) as well as the features xt of time t, and predicts ŷt =
A(St−1, xt). An algorithm A is proper if the predictor returned by the learning
algorithm x 7→ A(St, x) belongs to the space of functions {x 7→ θ>x, θ ∈ Θ} for all
time steps t > 1; otherwise, the algorithm is improper.

• In the proper setting, the predictor A(St−1)(·) cannot use xt. Follow-The-
Leader-type methods apply, and the problem can also be seen as instance of
Online Convex Optimization (OCO).

• In the improper setting, the predictor is allowed to use the knowledge of xt:
indeed, the predictor writes xt 7→ A(St−1, xt)(xt).

We can further separate algorithms into two families: Bayesian and non-Bayesian
methods. In this chapter, we introduce a new improper non-Bayesian algorithm, to
investigate if it is possible to achieve an optimal regret while remaining computa-
tionally efficient. We also propose a survey of recent advances on the topic of online
logistic regression.

Excellent introductory manuals on the general subject of online learning in-
clude Hazan [2019]; Orabona [2019] and Cesa-Bianchi and Lugosi [2006]. We for-
mally formulate the online logistic regression problem and introduce some notations
useful in the following. We consider the online problem over a series of rounds. At
each round t, an example feature xt ∈ X is showed; a label yt ∈ Y will be later
observed. We denote the features space X ⊂ Rd, Y = {−1,+1} for binary labels
and the prediction space Ŷ = R. In the point of view of online density estimation,
an algorithm A plays θ ∈ Rd, such that the probability of a label for an example x
is

p(y | x, θ) := 1
1 + exp(−y · θ>x) = σ(y · θ>x)

with σ the sigmoid function σ(u) := eu/(1 + eu) for u ∈ R. The loss at time t for
the logistic model θ is the log-loss

`(θ>xt, yt) = − log p(yt | xt, θ) = − log σ(yt · θ>xt).
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Equivalently, the algorithm A produces, for an example x, the prediction

ŷ = log p(+1 | x, θ)
p(−1 | x, θ) = θ>x,

and suffers the logistic loss ` : Ŷ × Y → R defined as

`(ŷ, y) = log (1 + exp (−ŷy))) = − log σ(ŷy).

Consider an individual sequence (xt, yt)t and the successive predictions (ŷt)t
produced by an algorithm A, the regret against a comparator θ ∈ Rd for n total
rounds writes

Regretn(θ) :=
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(θ>xt, yt),

and the regret against the comparison class Θ ⊆ Rd for total rounds n writes

Regretn :=
n∑
t=1

`(ŷt, yt)− inf
θ∈Θ

n∑
t=1

`(θ>xt, yt).

The goal is to obtain guarantees on the regret for any individual sequence, including
in the worst-case scenario.
Assumption 5.1 (Bounded features). The features are bounded i.e. ‖xt‖2 6 R
with some constant R > 0, for all t.
Assumption 5.2 (Comparison class). We use the `2 ball of radius B centered at
the origin as the comparison class, i.e. Θ = B(Rd, B) := {θ ∈ Rd : ‖θ‖2 6 B} with
some constant B > 0. Such Θ is compact and convex, it is sometimes called the
feasible set.

About the order of BR. The results that we present in this section are valid
for arbitrary parameters B,R > 0 and d, n > 1. In order to make these bounds
more concrete, we now discuss some natural scaling for the norm BR, following
Remark 2 of Mourtada and Gaïffas [2019].
Remark 5.1 (Parameter scaling). In the case n � d, consider a random vari-
able X ∈ Rd and denote Σ = E[XX>]. Assume that Σ is well-conditioned,
c := ‖Σ‖op‖Σ−1‖op = O(1); this means that X is approximately isotropic, and can
be ensured in practice by rescaling covariates. Assume also the bounded leverage
condition ‖Σ−1/2X‖ 6 ρ

√
d for some ρ > 1, and denote ψ := ‖θ‖Σ = E[〈θ,X〉2]1/2

as the signal strength. Then,

‖θ‖ ‖X‖ 6 ‖Σ−1/2‖op ‖θ‖Σ ‖Σ1/2‖op‖Σ−1/2X‖ 6 c1/2ψρ
√
d,

namely we have BR 6 c1/2ψρ
√
d = O(

√
d).

5.2 Properties of the logistic function

The algorithms with better regret guarantees for online logistic regression often
come from some more advanced studies on the logistic function. Denote ft(θ) :=
`(θ>xt, yt) = − log σ(yt · θ>xt) for θ ∈ Rd, the logistic loss function taking the
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parameter θ, induced by (xt, yt). The function ft is infinitely differentiable, its first
and second derivatives write

∇ft(θ) = −ytσ(−ytx>t θ)xt, ∇2ft(θ) = σ′(−ytx>t θ)xtx>t .

In the following, we make some observations on the logistic function and point out
the relationships between these properties and some known algorithms for online
logistic regression. Denote θt the point around which we make the approximation.

• Under Assumption 5.1, ft is R-Lipschitz, since ‖∇ft(θ)‖ 6 R for any (xt, yt)
and any θ. Under the same condition, ∇ft is R2-Lipschitz, i.e. ft is R2-smooth.

• The logistic loss function is convex, ∇2ft(θ) < 0 for any θ and any (xt, yt).
Hence, for any fixed θt, its first order approximation around θt defined as

f̃t : θ 7→ ft(θt) +∇ft(θt)>(θ − θt) (5.1)

is a lower-bound of ft for any θ. This is the key property in the theoretical
guarantees for Online Gradient Descent [Zinkevich, 2003].

• The logistic loss is exp(−BR)-exp-concave on the ball B(Rd, B) under As-
sumptions 5.1 and 5.2. The exp-concavity can be understood as a property
stating that the Hessian is large in the direction of the gradient. Indeed, α-
exp-concavity of a function ft is equivalent to ∇2ft(θ) < α∇ft(θ)∇ft(θ)> for
any θ; for the logistic function, this comes from σ′(u) = σ(u)(1 − σ(u)) =
exp(−u)σ2(u), hence σ′(u) > exp(−BR)σ2(u) whenever u 6 BR. Online New-
ton Step [Hazan et al., 2007] relies on the following quadratic approximation of
the logistic loss

f̃t : θ 7→ ft(θt) +∇ft(θt)>(θ − θt) + β

2 (θ − θt)>∇ft(θt)∇ft(θt)>(θ − θt) (5.2)

with β 6 exp(−BR) the exp-concavity parameter. Such f̃t is showed [Hazan
et al., 2007] to be a lower-bound of ft for any θ and any θt ∈ B(Rd, B). Also
relying on the exp-concavity are the Bayesian exponential weighted algorithms
as exposed in Hazan et al. [2007]; Kakade and Ng [2005].

• While the self-concordance [Nesterov, 2003] is a property on the control of
the third derivative by the second derivative, namely |f ′′′| 6 2(f ′′)3/2, the
logistic function is not self-concordant. Bach [2010] introduced “generalized
R-self-concordance” defined by |f ′′′| 6 Rf ′′, with some R > 0. For the logis-
tic function, its generalized self-concordance comes from a more precise study
on the derivatives of the sigmoid function, σ′′(u) = (1 − 2σ(u))σ′(u), hence
|σ′′(u)| 6 σ′(u) for any u ∈ R. A consequence of the generalized R-self-
concordance (under Assumption 5.1) of the logistic function states that

exp(−R ‖θ − θt‖)∇2ft(θt) 4 ∇2ft(θ) 4 exp(R ‖θ − θt‖)∇2ft(θt) (5.3)

for any θ and any θt. The property (5.3) controls the variation of the Hessian
around θt, hence it can deduce the local strong convexity around θt. Moreover,
such bounds (5.3) on second derivatives can be applied on the function ft to
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deduce bounds of ft(θ) in expression of ft(θt). Especially, the approximation
function f̃t defined by

f̃t : θ 7→ ft(θt) +∇ft(θt)>(θ − θt)

+ exp(−R ‖θ − θt‖) +R ‖θ − θt‖ − 1
R2 ‖θ − θt‖2

(θ − θt)>∇2ft(θt)(θ − θt) (5.4)

is showed [Bach, 2010, Proposition 1] to be a lower-bound of ft(θ) for any θ
and any θt, again under Assumption 5.1. In the batch learning setting, Sample
Minmax Predictor [Mourtada and Gaïffas, 2019] in the case of ridge-penalized
logistic regression also relies on the property (5.3) in their analysis for the excess
risk.

• Recent work of Jézéquel et al. [2020] introduced a new quadratic approximation
of the logistic function

f̃t : θ 7→ ft(θt) +∇ft(θt)>(θ − θt)

+ exp(ytθ>t xt)
2(1 +BR) (θ − θt)>∇ft(θt)∇ft(θt)>(θ − θt), (5.5)

and showed that under Assumption 5.1, f̃t is a lower-bound of ft on the ball
B(Rd, B), for any θt. The proof of this lower-bound relies on a study of the
logistic function which is more sophisticated than the exp-concavity: instead of
a fixed coefficient β being uniform and exponential in BR in (5.2), the second-
order coefficient in (5.5) adaptively depends on ytθ>t xt. Recent works [Agarwal
et al., 2021; Jézéquel et al., 2021] also rely on the lower-bound (5.5) while
generalizing it to the multi-class case.

• Also, the logistic function `(ŷ, y) = − log σ(ŷy) is 1-mixable, in the sense that,
for any probability distribution π over Ŷ = R, there exists a prediction ŷπ such
that, for any y ∈ {−1,+1},

Eŷ∼π [exp(−η`(ŷ, y)] 6 exp(−η`(ŷπ, y)) (5.6)

with η = 1. To see this for the logistic function, we construct

ŷπ = σ+ (Eŷ∼π[σ(ŷ)])

where σ+ : (0, 1) → R is the inverse of the sigmoid function, σ+(p) = log p
1−p ,

hence σ+(σ(u)) = u for any u ∈ R. Such ŷπ satisfies (5.6) with equality.
Bayesian methods Foster et al. [2018] and Jézéquel et al. [2021] rely on the
1-mixability of the logistic function.

5.3 Proper algorithms
We propose a literature review of online logistic regression methods. While some
of presented methods also apply to other problems, here we only present them as
solutions to the online logistic regression, and we highlight the necessary conditions
in each case. Within proper algorithms, there are Follow-The-Leader methods,
gradient-based methods and Bayesian methods.
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Follow-The-Leader methods

Let us start with probably the most intuitive idea: gradient-free methods. Follow-
The-Leader (FTL) consists in choosing, at time t, the parameter θ that would have
been the best to use on the previous t− 1 rounds in hindsight, i.e. to choose

θt = argmin
θ∈Rd

Lt−1(θ) with Lt−1(θ) :=
t−1∑
s=1

`s(θ).

However, the regret of this strategy can be linear in the number of rounds, consid-
ering for example the case where d = 1, xt = 1 and yt alternate between −1 and
+1.

Follow-The-Regularized-Leader (FTRL) is introduced in order to stabilize the
FTL solution, where the function to minimize is given with an additional regular-
ization term on θ, i.e. the algorithm shall choose at time t,

θt = argmin
θ∈Rd

{Lt−1(θ) + pen(θ)} ,

where the penalization term pen(θ) could be in `1, `2 or other forms. For example,
in a COLT Open Problem 2012, in d = 1 dimension and xt ∈ {−R, 0,+R} setting,
McMahan and Streeter [2012] used FTRL with a beta regularizer

pen(θ) = c(θ, λ, λ) with c(θ,N, P ) := P log(1 + exp(−θ)) +N log(1 + exp(θ))

with a constant λ > 0. They showed that O(
√
BR+ log(n)) regret is granted with

λ =
√

2/BR. However, it was not clear whether this result is generalizable to larger
dimensions and more general features.

Another variant of FTL, Follow-The-Approximate-Leader (FTAL), consists in
choosing

θt = argmin
θ∈Rd

L̃t−1(θ) with L̃t−1(θ) :=
t−1∑
s=1

˜̀
s(θ),

where each ˜̀
s is an approximation function of the true loss function `s. Indeed,

several gradient methods (OGD, ONS) could be seen as FTAL methods [Hazan
et al., 2007; Zinkevich, 2003], see details in the following paragraph. Interestingly,
sub-linear or logarithmic regret upper-bounds are granted with these methods.

Gradient-based methods

Online gradient descent (OGD) for online logistic regression was first reported
in Zinkevich [2003]. It starts with an arbitrary θ1 ∈ Θ, then successively updates
the predictions by

θt = ProjΘ(θt−1 − ηt∇`t−1(θt−1))

with ηt > 0 the step-size parameter at time t, and ProjΘ the Euclidean projector
operator onto the compact convex feasible set Θ. The regret analysis of OGD is
based on the convexity of the logistic function, and on the fact that a convex function
is lower-bounded by its tangent hyperplans, see Equation (5.1). This results in a
regret upper-bound O(BR

√
n) with the choice of step-sizes ηt = B/(R

√
t), as well
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as a regret lower-bound Ω(BR
√
n) in the worst case [Hazan, 2019] which is sub-

linear in the number of rounds n. OGD can also be seen2 as choosing at time
t,

θt = argmin
θ∈Θ

{
∇`t−1(θt−1)>(θ − θt−1) + 1

2ηt
‖θ − θt−1‖2

}
.

OGD results in O(nd) computational complexity in time for n total rounds, plus
the complexity costs in the projection steps.

Then, Online Newton Step (ONS) was proposed and analyzed in Hazan et al.
[2007]. It starts with an arbitrary θ1 ∈ Θ, then uses the predictions

θt = ProjΘ,At−1

(
A−1
t−1bt−1

)
with

At :=
t∑

s=1
∇`s∇`>s , bt :=

t∑
s=1
∇`s∇`>s θs −

1
β
∇`s, where ∇`t := ∇`t(θt)

with β = 1
2 min{ 1

4BR , exp(−BR)} as in (5.2), and ProjΘ,At−1 the projector operator
onto the compact convex feasible set Θ under the norm induced by At−1. The
regret analysis of ONS is based on the fact that the logistic loss function is R-
Lipschitz and exp(−BR)-exp-concave on the bounded feasible set, implying the
quadratic lower-bound (5.2) of the logistic function. The regret of ONS admits an
upper-bound [Hazan et al., 2007] in O(exp(BR)d log(n)), which is logarithmic in
the number of rounds n, but with an exponential factor in BR due to the exp-
concavity coefficient. ONS can be seen as running FTAL [Hazan et al., 2007], the
approximation function being the quadratic lower-bound function (5.2) i.e. choosing
at time t

θt = argmin
θ∈Θ

L̃t−1(θ) with L̃t−1(θ) :=
t−1∑
s=1

˜̀
s(θ),

where
˜̀
t(θ) := `t(θt) +∇`>t (θ − θt) + β

2 (θ − θt)>∇`t∇`>t (θ − θt).

At each step the computational cost is O(d2) as we need to iteratively update A−1
t ,

thanks to the matrix inversion lemma; the total computational complexity is O(nd2)
in time for n total rounds, plus the complexity costs in the projection steps; and
O(d2) space in memory is needed.

However, under the proper setting and by constructing adversary examples,
Hazan et al. [2014] showed that in the regime n = O(exp(B)), for one-dimensional
inputs the regret is at least Ω(B2/3n1/3) in the worst case [Hazan et al., 2014, Corol-
lary 7]; and for any larger dimension d > 2, Ω(

√
Bn) regret in the worst case [Hazan

et al., 2014, Corollary 8]. Therefore, any regret bound of form O(B logn) is impos-
sible for proper algorithms.

Bayesian proper method

Kakade and Ng [2005] was a first result suggesting that a regret of O(d log(n/d)) is
achievable for online logistic regression, by analyzing the following Bayesian Model

2An excellent post on FTRL-version and OMD-version of OGD https://www.timvanerven.nl/
blog/ftrl-vs-omd/.
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Averaging with Gaussian prior p0 = N (θ; 0, ν2Id). It predicts at time t,

ŷt =
(∫

Θ
θ · pt−1(dθ)

)>
xt

and updates the distribution pt by

pt(θ) ∝ exp
(
−

t∑
s=1

`(θ>xs, ys)
)
p0(θ).

For this procedure, with variational techniques, Kakade and Ng [2005] showed a re-
gret upper-bound in O(d log(Bn/d)), plus an additional penalty term that depends
on the prior, as well as on the squared `2-norm of the best comparator θ? [Kakade
and Ng, 2005, Theorem 2.2]. It is not clear how to efficiently compute such a
predictor.

5.4 Improper algorithms
Within improper algorithms, there are Bayesian and non-Bayesian methods.

Bayesian improper methods

Foster et al. [2018] used a uniform prior over Θ in Bayesian mixture with exponential
weights Vovk’s Aggregation Algorithm [Vovk, 1990]. In the case of online binary
logistic regression and without smoothing, the algorithm of Foster et al. [2018]
initializes p0 as the uniform distribution over Θ, successively predicts

ŷt = σ+(Eθ∼pt−1 [σ(θ>xt)])

where σ+ : (0, 1) → R is the inverse of the sigmoid function, σ+(p) = log p
1−p , and

updates the distribution pt over Θ by

pt(θ) ∝ exp
(
−

t∑
s=1

`(θ>xs, ys)
)
.

With this procedure, the regret has an upper-bound in O(d log(BRn/d)). This work
can be generalized intom-class softmax regression, with a regret inO(md log(n/md)).
However, this algorithm is computationally expensive, as it relies on Monte Carlo
methods and the log-concavity of the probability distributions pt: its computational
complexity is in O(B6n12(Bn+ d)12).

Recent work of Shamir [2020] investigated the achievable minimax regret rate
of online logistic regression from the scope of information theory. Using the redun-
dancy capacity Theorem, Shamir [2020] proposed regret lower- and upper-bounds
under Bayesian setting. Among other bounds, in particular, for “smaller d”, with
‖θ‖2 6 B,

d

2 log n

d2 6 Regretn 6
d

2 log B
2n

d
.

In a similar direction, another recent work Jacquet et al. [2021] computed the precise
minimax regret in O

(
d
2 log(2n/π)

)
in the case of categorical feature values. Note

that these works are results on the characterization of the minimax regret, and do
not provide an explicit algorithm.
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Finally, a recent work Jézéquel et al. [2021] focus on the multi-class logistic
regression, proposing Gaussian Aggregating Forecaster (GAF) which relies on the
quadratic approximation (5.5) and on the Bayesian mixture with Gaussian distri-
butions.

Non-Bayesian improper algorithms

As a non-Bayesian improper algorithm, AIOLI [Jézéquel et al., 2020] is based on a
new quadratic lower bound (5.5) of the logistic function, with adaptive curvature
which is better than exp-concavity. It also relies on a Vovk-Azoury-Warmuth-
inspired [Azoury and Warmuth, 2001; Vovk, 2001] and SMP-inspired [Mourtada
and Gaïffas, 2019] regularization, which is a regularization by samples. AIOLI
computes the following estimator at time t,

θt = argmin
θ∈Rd

{
L̃t−1(θ) + `(θ>xt,+1) + `(θ>xt,−1) + λ ‖θ‖2

}
with L̃t−1(θ) := ∑t−1

s=1
˜̀
s(θ), where the surrogate loss function is defined by

˜̀
t(θ) := `t(θt) +∇`t(θt)>(θ − θt) + exp(ytθ>t xt)

2(1 +BR) (θ − θt)>∇`t(θt)∇`t(θ̂t)>(θ − θt)

as in (5.5). The regret of AIOLI is upper-bounded by O(dBR log(BRn)) with a
computational cost in O(nd2 + nBR log(n)). Recent work FOLKLORE [Agarwal
et al., 2021] generalizes the quadratic lower bound (5.5) to the multi-class case
and proposes an improper algorithm with similar regret and computational cost
compared to AIOLI.

However, the regret upper-bound of AIOLI might be seen as suboptimal for the
following reasons: 1) from Remark 5.1, BR scales as O(

√
d), then regret in O(d

√
d)

of AIOLI is not optimal; 2) consider the online-to-batch conversion on AIOLI, the
algorithm’s expected bound of excess risk is in O(dBR log(BRn)); apart from the
factor logn, unavoidable in the online setting, this bound is of a factor BR worse
than the expected excess risk of SMP [Mourtada and Gaïffas, 2019].

Sample Minmax Predictor (SMP) [Mourtada and Gaïffas, 2019] is an algorithm
for the batch setting. In particular, for binary logistic regression with (Xi, Yi)i=1,...,n
i.i.d. data and λ > 0 the penalization parameter, the ridge-penalized SMP computes
the estimator

θ̂zλ,n = argmin
θ∈Rd

{
1

n+ 1

(
n∑
i=1

`(〈θ, Zi〉) + `(〈θ, z〉)
)

+ λ ‖θ‖2
}

where we denote Zi = −YiXi, and z = (x, y) a virtual sample. Then SMP predicts
the conditional probability, for any (x, y) ∈ Rd × {−1,+1}, by

p(y | x) =
σ
(
y〈θ̂(x,y)

λ,n , x〉
)
e−λ‖θ̂

(x,y)
λ,n
‖2

σ
(
〈θ̂(x,+1)
λ,n , x〉

)
e−λ‖θ̂

(x,+1)
λ,n

‖2 + σ
(
− 〈θ̂(x,−1)

λ,n , x〉
)
e−λ‖θ̂

(x,−1)
λ,n

‖2
.

The expected excess risk of ridge-penalized SMP for logistic regression is in O((d+
B2R2)/n). But it was not clear whether this procedure could be applied in the
online setting and how.
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An open problem. As far as we know, there is no algorithm with an opti-
mal regret guarantee for the problem of online logistic regression. Bayesian algo-
rithms [Foster et al., 2018; Jézéquel et al., 2021] enjoy better regret upper-bounds
but suffer from computational complexity; non-Bayesian algorithms [Agarwal et al.,
2021; Hazan et al., 2007; Jézéquel et al., 2020], less computationally demanding, fail
to provide similar regret upper-bounds. We believe that there is a room between
them, and that an online version of SMP [Mourtada and Gaïffas, 2019] or SMP-
inspired methods, which would be some non-Bayesian improper algorithms, could
achieve this goal. In this direction, we investigate some non-Bayesian improper
algorithms with realistic computational complexity, and their regret upper-bounds,
even though we do not improve the state-of-the-art of this problem.

We summarize the regret upper-bounds and the computational costs of these
algorithms in Table 5.1 below.

Table 5.1 – Regret upper-bounds and computational costs in O(·) of several algorithms
for online binary logistic regression: OGD [Zinkevich, 2003], ONS [Hazan et al., 2007],
Foster [Foster et al., 2018], GAF [Jézéquel et al., 2021], AIOLI [Jézéquel et al., 2020],
FOLKLORE [Agarwal et al., 2021]. AOSMP stands for Approximated One-Step Minmax
Predictor (Algorithm 6 in this work), CGD stands for the computational cost of the gradient
descent for finding Ly?t . Algorithms with * also handle the multi-class case.

Algorithm Type Regret upper-bound Computational cost
OGD Proper BR

√
n nd

ONS Proper deBR log(n) nd2

Foster Improper, Bayesian d log(BRn) B6n12(Bn+ d)12

GAF* Improper, Bayesian dBR log(n) + dB2 nd2 + n4

AIOLI Improper, non-Bayesian dBR log(BRn) nd2 + nBR log(n)
FOLKLORE* Improper, non-Bayesian dBR log(n) nd2 + nBR log(n)

AOSMP Improper, non-Bayesian dBR log(n) +B2R2 nd2 + nCGD

5.5 OSMP: One-Step Minmax Predictor

In this section, we explore a SMP-inspired [Mourtada and Gaïffas, 2019] predictor
for online logistic regression, and propose a study on the corresponding regret.

5.5.1 Algorithm

Under the setting of online binary logistic regression, at time step t, we have seen
(x1, y1), ..., (xt−1, yt−1), predicted ŷ1, ..., ŷt−1; now we are provided with xt, and we
need to propose our prediction ŷt. Consider the “λ-ridge penalized regret” at time
t with some λ > 0,

t∑
s=1

`(ŷs, ys)−
(

t∑
s=1

`(θ>xs, ys) + λ ‖θ‖2
)
. (5.7)

As for the prediction at time t, the One-Step Minmax Predictor (OSMP) aims to
minimize this quantity with respect to the worst case over all possible values of
label yt ∈ {−1, 1} and over all possible “adversary parameter” θ. Let us study this
predictor under Assumptions 5.1 and 5.2.

132



CHAPTER 5. ONLINE LOGISTIC REGRESSION

Definition 5.2 (OSMP). Given λ > 0 the ridge penalization parameter. Denote
∆ ⊆ Rd the search space for the parameter θ, such that Θ ⊆ ∆ and such that ∆ is
convex. OSMP computes the estimator

ŷt = argmin
ŷ∈R

sup
yt∈{−1,1}

sup
θ∈∆

{
L̂t−1 + `(ŷ, yt)−

(
Lt−1(θ) + `(θ>xt, yt) + λ ‖θ‖2

)}
(5.8)

with notations

L̂t−1 :=
t−1∑
s=1

`(ŷs, ys), Lt−1(θ) :=
t−1∑
s=1

`(θ>xs, ys),

where L̂t−1 stands for actual sum of losses suffered by successively proposed predic-
tions (ŷs) until time t − 1; Lt−1 is the function taking parameter θ, corresponding
to the sum of losses until time t− 1 suffered by a fixed parameter θ.

OSMP can be seen as a minimax strategy and a very pessimistic one: it always
considers the worst possible scenario, in terms of the label yt and the adversary
parameter θ ∈ ∆, measured by the λ-ridge penalized regret at time t; from this,
OSMP aims to find the best possible (one-step) predictor of time t against the worst
scenario.

In Equation (5.8), we may search θ exactly in the same comparison class ∆ = Θ;
using a larger search space ∆ ⊇ Θ is also possible, meaning that our minimax
strategy is even more pessimistic.
Remark 5.3. OSMP defined in Equation (5.8) is equivalent to predict probabilities
p(+1 | xt) = p̂t and p(−1 | xt) = 1− p̂t with

p̂t = argmin
p∈(0,1)

sup
yt∈{−1,1}

sup
θ∈∆

{
L̂t−1 − log p−

(
Lt−1(θ) + `(θ>xt, yt) + λ ‖θ‖2

)}
(5.9)

using p̂t = σ(ŷt).

Notations

Let us introduce some useful notations. Denote

Lλ,t(θ) := Lt(θ) + λ ‖θ‖2 , L?λ,t := inf
θ∈∆

Lλ,t(θ), (5.10)

and
Lyλ,t(θ) := `(θ>xt, y) + Lλ,t−1(θ) for y ∈ {−1,+1},

and their infimum

Ly?λ,t := inf
θ∈∆

{
`(θ>xt, y) + Lλ,t−1(θ)

}
for y ∈ {−1,+1}.

We also introduce the notations

θt := argmin
θ∈∆

Lλ,t(θ), θ
(x,y)
t := argmin

θ∈∆

{
`(θ>x, y) + Lλ,t−1(θ)

}
for y ∈ {−1,+1}.

We remark that θt as well as θ(x,y)
t exist and are unique, as the minimizers of strongly

convex functions over the convex set ∆.
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Alternative expression and explicit algorithm

Relying on the specificities of the log-loss, we deduce the following alternative ex-
pression of OSMP, which allows the explicit algorithm computing OSMP.
Lemma 5.4. OSMP as defined in Equation (5.8) is equivalent to

ŷt = −L+1?
λ,t + L−1?

λ,t . (5.11)

Proof. Since L̂t−1 does not depend on yt nor on θ, we can drop it from argmin;
also, we can swap supyt and supθ, and rewrite the Equation (5.8) as

ŷt = argmin
ŷ∈R

sup
θ∈∆

{
sup

yt∈{−1,1}

{
`(ŷ, yt)− `(θ>xt, yt)

}
− Lλ,t−1(θ)

}
where we notice that

sup
yt∈{−1,1}

{
`(ŷ, yt)− `(θ>xt, yt)

}
= sup

yt∈{−1,1}
log σ(ytθ>xt)

σ(ytŷ)

= max
{

log σ(θ>xt)
σ(ŷ) , log σ(−θ>xt)

σ(−ŷ)

}
.

Recall that σ(−ŷ) = 1− σ(ŷ) for the sigmoid function, hence

ŷt = argmin
ŷ∈R

sup
θ∈∆

{
max

{
logσ(θ>xt) exp(−Lλ,t−1(θ))

σ(ŷ) ,

logσ(−θ>xt) exp(−Lλ,t−1(θ))
1− σ(ŷ)

}}

then

ŷt = argmin
ŷ∈R

max
{supθ∈∆

{
σ(θ>xt) exp (−Lλ,t−1(θ))

}
σ(ŷ) ,

supθ∈∆

{
σ(−θ>xt) exp (−Lλ,t−1(θ))

}
1− σ(ŷ)

}
.

Consider the fact that

p̂ := argmin
p∈[0,1]

max
{
a

p
,

b

1− p

}
= a

a+ b
, for a, b > 0

as to solve the minimax problem of two parametrized linear functions, we have

σ(ŷt) =
supθ∈∆

{
σ(θ>xt) exp (−Lλ,t−1(θ))

}
supθ∈∆ {σ(θ>xt) exp (−Lλ,t−1(θ))}+ supθ∈∆ {σ(−θ>xt) exp (−Lλ,t−1(θ))}

and hence the expression of ŷt as in the statement of the Lemma.
Now we are ready to summarize the computation of OSMP in Algorithm 5.

Remark 5.5. OSMP predicts probabilities p(+1 | xt) = p̂t and p(−1 | xt) = 1 − p̂t
with

p̂t =
exp(−L+1?

λ,t )
exp(−L+1?

λ,t ) + exp(−L−1?
λ,t )

(5.12)

for y ∈ {−1,+1}, by remarking that p̂t = σ(ŷt).
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Algorithm 5 OSMP description.
1: Inputs: Parameters λ > 0, n, d > 1, constants B,R > 0, search space ∆
2: Initialize: Function Lλ,0(θ) = λ ‖θ‖2
3: for t = 1, . . . , n do
4: Receive xt
5: Compute Ly?t ← infθ∈∆

{
`(θ>xt, y) + Lλ,t−1(θ)

}
for y = −1 and y = +1

6: Predict ŷt ← −L+1?
t + L−1?

t

7: Receive yt
8: Update function Lλ,t(θ) = Lλ,t−1(θ) + `(θ>x, yt)
9: end for

Equation (5.12) is analogous to Equation (47) (which comes from its Theorem 2)
of Mourtada and Gaïffas [2019] for the Sample Minmax Predictor under the batch
setting. In place of the penalization exp

(
− λ‖θ(xt,y)

t ‖2
)
of their Equation (47), in

our case we have exp
(
− Lλ,t−1(θ(xt,y)

t )
)
in each term of Equation (5.12), as the

penalization for the loss until time t− 1, precisely due to the online setting.
Remark 5.6. Recall that the FTRL consists in using 〈θt−1, xt〉 as the prediction at
time t, and that the oracle would use 〈θt, xt〉 as the solution for the penalized regret
minimization problem until time t. Denote θ−ytt = θ

(xt,−yt)
t . We remark for OSMP

yt〈θ−ytt , xt〉 6 ytŷt = L−yt?λ,t − L
?
λ,t 6 yt 〈θt, xt〉 ,

and we can understand ŷt from Equation (5.11) as a linear combination of 〈θ−ytt , xt〉
and 〈θt, xt〉. Namely, there is 0 6 α 6 1 such that

ŷtyt = α · 〈θt, xt〉+ (1− α) · 〈θ−ytt , xt〉

with

α =
L−yt?λ,t − L?λ,t − yt〈θ

−yt
t , xt〉

yt 〈θt, xt〉 − yt〈θ−ytt , xt〉
.

Depending on the possible values for yt ∈ {−1,+1}, the oracle prediction for ŷt,
as the solution of the penalized regret minimization problem until time t, is either
〈θt, xt〉 or 〈θ−ytt , xt〉. Interestingly, ŷt is an average of these two potential oracle
solutions, weighted by their “performance” measured by α. Note that this formu-
lation cannot be used to compute ŷt for prediction, as it requires the knowledge of
yt (the environment only reveals true yt after the prediction).

5.5.2 Analysis of regret and instant regret

We move to the analysis of the regret of the successive predictions (ŷt)t produced
by OSMP (Algorithm 5). Recall that for a sequence (xt, yt)t and some predictions
(ŷt)t, the regret until round n against θ writes

Regretn(θ) =
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(θ>xt, yt).

Note that ∑n
t=1 `(θ>xt, yt) = Lλ,n(θ)− λ ‖θ‖2. Since we are under Assumption 5.2,

and we assume Θ ⊆ ∆, for any comparison parameter θ ∈ Θ,

Regretn(θ) 6
n∑
t=1

(
`(ŷt, yt)− inf

θ′∈∆
Lλ,t(θ′) + inf

θ′∈∆
Lλ,t−1(θ′)

)
+ λ ‖θ‖2 ,
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where we can simply upper-bound the last term λ ‖θ‖2 by λB2. Then it remains to
upper-bound the sum. We introduce instant regret as the component term in the
sum of this expression.
Definition 5.7 (Instant regret). With some abuse of language, we call “instant
regret” at time t the quantity defined by

r̂t := `(ŷt, yt)− L?λ,t + L?λ,t−1, (5.13)

where L?λ,t is defined in Equation (5.10).
The following Lemma is analogous to Theorem 2 of Mourtada and Gaïffas [2019],

in particular its Equation (15) on the upper-bound of the excess risk.
Lemma 5.8. The instant regret defined in (5.13) also writes

r̂t = log
(
exp(−L+1?

λ,t + L?λ,t−1) + exp(−L−1?
λ,t + L?λ,t−1)

)
. (5.14)

Proof. We plug the expression (5.11) of ŷt into the definition of r̂t to obtain

r̂t = log
(
1 + exp

(
−yt(−L+1?

λ,t + L−1?
λ,t )

))
− L?λ,t + L?λ,t−1

= log
(
1 + exp

(
Lyt?λ,t − L

−yt?
λ,t

))
− L?λ,t + L?λ,t−1,

then, we notice that Lytλ,t = Lλ,t hence Lyt?λ,t = L?λ,t, and we obtain the statement in
Lemma.

Next we need to upper-bound the sum of the instant regrets to obtain an upper-
bound of the regret on the OSMP.

5.5.3 An instant regret upper-bound via generalized self-concordance

From now on, we use the search space ∆ = Rd as this is technically practical.
Denote ‖x‖H := 〈Hx, x〉1/2 for any x ∈ Rd and H ∈ Rd×d symmetric positive
matrix. The following Proposition provides an upper-bound of the instant regrets
of OSMP.
Proposition 5.9. Under Assumption 5.1, we run OSMP (Algorithm 5) with λ >
R2 and ∆ = Rd. Consider its instant regret r̂t defined in Equation (5.13). The
instant regret is upper-bounded, namely

r̂t 6 e · σ′(〈θt, xt〉) · ‖xt‖2(∇2Lλ,t(θt))−1 , (5.15)

where ∇2Lλ,t(θt) stands for the Hessian of Lλ,t evaluated on θt,

∇2Lλ,t(θt) =
t∑

s=1
σ′(〈θt, xs〉)xsx>s + 2λId. (5.16)

Proof. Recall that

θt = argmin
θ∈Rd

Lλ,t(θ) = argmin
θ∈Rd

{
`(θ>xt, yt) + Lt−1(θ) + λ ‖θ‖2

}
,

denote zt = −ytxt, and denote

θ−ytt := argmin
θ∈Rd

{
`(θ>xt,−yt) + Lt−1(θ) + λ ‖θ‖2

}
= argmin

θ∈Rd

{
Lt(θ)− 〈θ, zt〉+ λ ‖θ‖2

}
,
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as `(θ>xt,−yt) = − log σ(θ>zt) = − log σ(−θ>zt) − 〈θ, zt〉 = `(θ>xt, yt) − 〈θ, zt〉.
Then from Equation (5.14),

r̂t = log
(
exp(−(L+1?

λ,t − L
?
λ,t−1)) + exp(−(L−1?

λ,t − L
?
λ,t−1))

)
= log

(
exp(−`(〈θt, xt〉 , yt)− (Lλ,t−1(θt)− L?λ,t−1))

+ exp(−`(〈θ−ytt , xt〉,−yt)− (Lλ,t−1(θ−ytt )− L?λ,t−1))
)

= log
(
σ(−〈θt, zt〉) exp(−(Lλ,t−1(θt)− L?λ,t−1))

+ σ(〈θ−ytt , zt〉) exp(−(Lλ,t−1(θ−ytt )− L?λ,t−1))
)
.

We use the fact that Lλ,t−1(θt) > L?λ,t−1 and L?λ,t−1(θ−ytt ) > L?λ,t−1, and σ(−u) =
1− σ(u), then log(1 + u) 6 u for any u > −1, to write

r̂t 6 log
(
1− σ(〈θt, zt〉) + σ(〈θ−ytt , zt〉)

)
6 σ(〈θ−ytt , zt〉)− σ(〈θt, zt〉). (5.17)

Next, to upper-bound the RHS, we roughly follow similar techniques as in the proof
of Theorem 5 of Mourtada and Gaïffas [2019]. For the sake of completeness, we
present the main steps here.

Since Lλ,t(θ) − 〈θ, zt〉 = L−ytλ,t (θ), and the function Lλ,t is 2λ-strongly convex
(and ‖xt‖ 6 R from Assumption 5.1), it follows from Lemma 5.10 below that

‖θ−ytt − θt‖ 6
R

2λ, 0 6 〈θ−ytt − θt, zt〉 6
R2

2λ 6
1
2

where we also use the assumption λ > R2 for the last inequality.
Next, since log(σ′)′ = σ′′/σ′ = 1 − 2σ < 1, we have for every u ∈ R, v ∈

[0, 1/2], log σ′(u+ v)− log σ′(u) 6 v hence σ′(u+ v) 6 evσ′(u) 6 e1/2σ′(u). Hence,
σ(u+ v)− σ(u) 6 e1/2 · σ′(u) · v for every u ∈ R, v ∈ [0, 1/2]. With u = 〈θt, zt〉 and
v = 〈θ−ytt − θt, zt〉, we have

σ(〈θ−ytt , zt〉)− σ(〈θt, zt〉) 6 e1/2 · σ′(〈θt, zt〉) · 〈θ−ytt − θt, zt〉. (5.18)

Next, since the function Lλ,t is generalized R-self-concordant under Assumption 5.1,
from Equation (5.3), we have

∇2Lλ,t(θ + β) < e−R‖β‖∇2Lλ,t(θ)

for any β and θ. By letting θ = θt and β = θ′− θt, we obtain that the function Lλ,t
is e−(1/2+ε)∇2Lλ,t(θt)-strongly convex on the open ball Ωε = {θ′ ∈ Rd : R‖θ′−θt‖ <
1/2+ε}, for any ε > 0. In addition, L−ytλ,t (θ) = Lλ,t(θ)−〈θ, zt〉 reaches its minimum
at θ−ytt and θ−ytt ∈ Ωε. Using Lemma 5.10 again, we have

〈θ−ytt − θt, zt〉 6 e1/2+ε ‖xt‖2(∇2Lλ,t(θt))−1

and
‖θ−ytt − θt‖∇2Lλ,t(θt) 6 e

1/2+ε ‖xt‖(∇2Lλ,t(θt))−1 .

Taking ε→ 0, we have

〈θ−ytt − θt, zt〉 6 e1/2 ‖xt‖2∇2Lλ,t(θt)−1 (5.19)
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and
‖θ−ytt − θt‖∇2Lλ,t(θt) 6 e

1/2 ‖xt‖(∇2Lλ,t(θt))−1 .

Hence, putting together Equations (5.18) and (5.19), we obtain

σ(〈θ−ytt , zt〉)− σ(〈θt, zt〉) 6 e · σ′(〈θt, zt〉) · ‖xt‖2(∇2Lλ,t(θt))−1

= e · σ′(〈θt, zt〉) ·
〈

(∇2Lλ,t(θt))−1xt, xt
〉

= e · Tr
{

(∇2Lλ,t(θt))−1σ′(〈θt, zt〉)xtx>t
}

that we plug back into Equation (5.17), and we remark that σ′ is an even function,
to conclude on the statement of Proposition.

The following Lemma is a generalization of Lemma 4 of Mourtada and Gaïffas
[2019] by allowing f to be a differentiable function (instead of a linear one); its
proof is based the similar arguments.
Lemma 5.10. (Stability) Let Ω be a nonempty open convex subset of Rd, and
F : Ω → R a differentiable function. Assume that F is Σ-strongly convex on Ω,
where Σ is a d×d symmetric positive matrix, in the sense that, for every x, x′ ∈ Ω,

F (x′) > F (x) + 〈∇F (x), x′ − x〉+ 1
2
∥∥x′ − x∥∥2

Σ . (5.20)

Assume G : x 7→ F (x)+f(x) with f a differentiable function, such that G is strongly
convex and G reaches its minimum at some x̃ ∈ Ω. Denote x∗ ∈ Ω the minimum
of F . Then

‖x̃− x∗‖Σ 6 ‖∇f(x̃)‖Σ−1

and
〈−∇f(x̃), x̃− x∗〉 6 ‖∇f(x̃)‖2Σ−1 .

Proof. Since x∗ and x̃ are respectively minimizers of F and G, we have 0 = ∇F (x∗)
and 0 = ∇F (x̃) +∇f(x̃), the latter implies

〈∇F (x̃), x̃− x∗〉 = 〈−∇f(x̃), x̃− x∗〉 .

Since F is Σ-strongly convex, by substituting x and x′, for every x and x′,〈
∇F (x′)−∇F (x), x′ − x

〉
>
∥∥x′ − x∥∥2

Σ .

Letting x′ = x̃ and x = x∗, we have

〈∇F (x̃), x̃− x∗〉 > ‖x̃− x∗‖2Σ .

On the other hand, the Cauchy-Schwarz inequality implies that

〈−∇f(x̃), x̃− x∗〉 6 ‖∇f(x̃)‖Σ−1 ‖x̃− x∗‖Σ ,

plugging in, we have

‖x̃− x∗‖2Σ 6 ‖∇f(x̃)‖Σ−1 ‖x̃− x∗‖Σ

hence

‖x̃− x∗‖Σ 6 ‖∇f(x̃)‖Σ−1 and 〈−∇f(x̃), x̃− x∗〉 6 ‖∇f(x̃)‖2Σ−1 .
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Proposition 5.9 is as far as goes our analysis of OSMP, for the reasons described
below. The classical approach [Cesa-Bianchi and Lugosi, 2006; Hazan et al., 2007]
of online learning literature to upper-bound the instant regret is to use the partic-
ular structure of the quadratic form associated to the Hessian matrix of the loss.
However, with the upper-bound (5.15), the Hessian ∇2Lλ,t(θt) depends on θt. Let
us explain how it works when there is not such a dependence. In that case, we
typically bring the upper-bound on the instant regret into an expression of the
form

‖xt‖2A−1
t

= 〈xt, A−1
t xt〉, where At :=

t∑
s=1

xsx
>
s + 2λId. (5.21)

Then, we can use Cesa-Bianchi and Lugosi [2006, Lemma 11.11] which leads to

〈xt, A−1
t xt〉 = 1− detAt−1

detAt
6 log detAt

detAt−1
(5.22)

and ends up with a telescopic sum on RHS. We recall Lemma 11.11 of Cesa-Bianchi
and Lugosi [2006] below.
Lemma 5.11 (Lemma 11.11 of Cesa-Bianchi and Lugosi [2006]). Let B be an
arbitrary d× d full-rank matrix, and x ∈ Rd an arbitrary vector. Let A = B+xx>.
Then

x>A−1x = 1− det(B)
det(A) .

In our case, from Proposition 5.9, we have an upper-bound of the instant regret
that writes (up to the constant factor e)

σ′ (〈θt, xt〉) ‖xt‖2(∇2Lλ,t(θt))−1 , where ∇2Lλ,t(θt) =
t∑

s=1
σ′(〈θt, xs〉)xsx>s + 2λId,

which is indeed very similar to the expression in Equation (5.21). Unfortunately,
directly applying Equation (5.22) would not bring us to a telescopic sum, as the
Hessian ∇2Lλ,t(θt) does depend on θt in each term of the sum i.e. each term
σ′(〈θt, xs〉)xsx>s depends on θt. We can only write

σ′ (〈θt, xt〉) ‖xt‖2(∇2Lλ,t(θt))−1 = 1− det∇2Lλ,t−1(θt)
det∇2Lλ,t(θt)

6 log det∇2Lλ,t(θt)
det∇2Lλ,t−1(θt)

,

but the sum of RHS terms is not telescopable.
In the following, we might want to control each term σ′(〈θt, xs〉) for indices s < t,

and in particular we might want to find a lower-bound of σ′(〈θt, xs〉) in function of
σ′(〈θt, xt〉) that eventually leads a term in a telescopic sum. We give below a list of
directions that we tried together with the specific difficulties in each.

• A first idea is to use the uniform lower-bound, i.e. for ‖θt‖ 6 B and ‖xs‖ 6 R,

σ′(〈θt, xs〉) > exp(−BR), (5.23)

then

∇2Lλ,t(θt) < exp(−BR)
t∑

s=1
xsx
>
s + 2λId.
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From this, we simply use σ′ (〈θt, xt〉) 6 1/4 and apply Lemma 11.11 of Cesa-
Bianchi and Lugosi [2006], with At := exp(−BR)∑t

s=1 xsx
>
s + 2λId, we obtain

σ′ (〈θt, xt〉) ‖xt‖2(∇2Lλ,t(θt))−1 6
1
4 ‖xt‖

2
A−1
t

= exp(BR)
4

(
1− detAt−1

detAt

)
6

exp(BR)
4 log At

At−1
.

Putting this into Equation (5.15), we can upper-bound the sum of instant re-
grets by a telescopic sum which results

n∑
t=1

r̂t 6
exp(BR+ 1)

4 log detAn
detA0

where we can use

log det (An/2λ) 6 d log
(

1 + e−BRnR2

2dλ

)
.

Finally, with the choice λ = R2, we have

Regretn 6
eBR+1

4 d log
(

1 + e−BR

2d n

)
+B2R2.

In this way, we obtain for OSMP a regret upper-bound that is logarithmic in
the number of total rounds n; but exactly because of the use of the uniform
lower-bound (5.23), the factor exp(BR) in the regret is unavoidable. That is
the reason why we might need to use some bounds that are more precise than
the uniform one (5.23).

• From the stability lemma (Lemma 5.10), we know that θt is “not very far” from
θ−ytt , and that θt is “not very far” from θt−1. For example, using the fact that
the function Lλ,t is 2λ-strongly convex together with the stability lemma, we
know that the distance between θt and θt−1 is upper-bounded by a constant, i.e.
‖θt − θt−1‖ 6 R

2λ . On the other hand, since log(σ′)′ = σ′′/σ′ = 1 − 2σ < 1, we
have for every u ∈ R, v ∈ [0, 1/2], log σ′(u+v)− log σ′(u) 6 v hence σ′(u+v) 6
evσ′(u) 6 e1/2σ′(u). Applying this with u = 〈θt, xs〉 and v = 〈θt−1 − θt, xs〉
yields (up to change (u, v) to (−u,−v) to guarantee v > 0, as σ′ is an even
function)

σ′(〈θt, xs〉) > e−1/2σ′(〈θt−1, xs〉) (5.24)
for any indices t > 1 and s. We plug this into the Hessian ∇2Lλ,t(θt) (Equa-
tion (5.16)), then

∇2Lλ,t(θt) < σ′(〈θt, xt〉)xtx>t + e−1/2
t−1∑
s=1

σ′(〈θt−1, xs〉)xsx>s + 2λId

< σ′(〈θt, xt〉)xtx>t + e−1/2∇2Lλ,t−1(θt−1).

Hence, applying Lemma 11.11 of Cesa-Bianchi and Lugosi [2006], we obtain

σ′ (〈θt, xt〉) ‖xt‖2(∇2Lλ,t(θt))−1 6 1− e−d/2 det∇2Lλ,t−1(θt−1)
det∇2Lλ,t(θt)

6 log det∇2Lλ,t(θt)
det∇2Lλ,t−1(θt−1) + d

2 .

140



CHAPTER 5. ONLINE LOGISTIC REGRESSION

Summing over the first term is telescopic, but summing over the second term
would result in a linear term. Indeed, with

log det
(
∇2Lλ,t(θt)/2λ

)
6 d log

(
1 + nR2

8dλ

)
,

and the choice λ = R2, we would finally obtain for OSMP

Regretn 6 ed log
(

1 + n

8d

)
+ dn

2 +B2R2.

In this way, we get rid of the exponential factor in the regret upper-bound, but
we have a term that is linear in the number of total rounds n: the approach
with (5.24) fails to show a logarithmic regret. We might notice that the d/2
additional term comes exactly from the factor e−1/2 in Equation (5.24); to avoid
the linear term, a lower-bound with a factor more precise than e−1/2 might be
useful instead of Equation (5.24).

• Indeed, we may more heavily exploit the generalized R-self-concordance of the
function Lλ,t, hence more precisely characterize the distance between θt and
θt−1. As consequence, Lλ,t is not only 2λ-strongly convex but also “locally”
e−1/2∇2Lλ,t(θt)-strongly convex. Using this together with Lemma 5.10, we
have

‖θt − θt−1‖∇2Lλ,t(θt) 6 e
1/2 · ‖σ(〈θt, zt〉)xt‖(∇2Lλ,t(θt))−1 .

On the other hand, with similar arguments as before, namely from log(σ′)′ =
σ′′/σ′ = 1−2σ < 1, we have for every u ∈ R, v > 0, log σ′(u+v)− log σ′(u) 6 v
hence σ′(u+ v) 6 evσ′(u); applying this for u = 〈θt, xs〉 and v = 〈θt−1 − θt, xs〉
yields (up to change (u, v) to (−u,−v) to guarantee v > 0, as σ′ is an even
function)

σ′(〈θt, xs〉) > exp(− |〈θt − θt−1, xs〉|)σ′(〈θλ,t−1, zs〉),
where we can use the Cauchy-Schwarz inequality

|〈θt − θt−1, xs〉| 6 ‖θt − θt−1‖∇2Lλ,t(θt) ‖xs‖(∇2Lλ,t(θt))−1 .

We plug this into the Hessian ∇2Lλ,t(θt) (Equation (5.16)), then

∇2Lλ,t(θt)

<σ′(〈θt, xt〉)xtx>t +
t−1∑
s=1

exp(− |〈θt − θt−1, xs〉|)σ′(〈θt−1, xs〉)xsx>s + 2λId

<σ′(〈θt, xt〉)xtx>t + 2λId

+
t−1∑
s=1

exp(−e1/2 ‖xt‖(∇2Lλ,t(θt))−1 ‖xs‖(∇2Lλ,t(θt))−1)σ′(〈θt−1, xs〉)xsx>s .

But it is not clear what can be done with this.

Finally, we also remark that there is a similar situation in the proof of Theorem 6
of Mourtada and Gaïffas [2019], Equations (92)-(94). Under the setting of i.i.d.
data and while looking for upper-bounds in expectation, they used an argument of
exchangeability (Z1, . . . , Zt−1, Zt follow the same distribution). Unfortunately, this
argument is not possible in the online setting, as we do not make any assumption
on the distribution of data (xt, yt)t, and we look for a regret upper-bound that is
valid for any individual sequence.
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5.5.4 Some special cases in dimension 1

In dimension d = 1, we rewrite Equation (5.15) of Proposition 5.9 as

r̂t 6 e ·
x2
tσ
′(θtxt)∑t

s=1 x
2
sσ
′(θtxs) + 2λ

. (5.25)

For xt taking values in {−R, 0, R}. Let us start with a simplified situation where
xt ∈ {−1, 1}. Denote zt = −ytxt, then zt ∈ {−1,+1}. Denote Pt := card{s 6 t :
zs = 1} the number of zs = 1, and Nt := card{s 6 t : zs = −1} the number of
zs = −1. Then,

Lλ,t(θ) = −Pt log σ(−θ)−Nt log σ(θ) + λθ2. (5.26)

• For λ > 0 (and we are in particular interested in the case λ > 1), although we
do not have a closed form for θt or L?t , we can make the following observation:
since σ′ is an even function, zs ∈ {−1,+1}, x2

sσ
′(θtzs) takes the same value for

all s 6 t. Therefore, it can be deduced from Equation (5.25) that

r̂t 6 e ·
1
t
, (5.27)

hence Regretn 6 e · logn+B2 +O(1) with λ = 1.

• This upper-bound in form of the one of (5.27) remains true if we allow xt to
take value 0: in Equation (5.25), we can simply ignore all terms in s < t with
xs = 0 as they don’t affect the value of the RHS of Equation (5.25).

Now consider the case where xt only takes values in {−R, 0, R} for some R > 0.
We remark that for all s 6 t,

x2
sσ
′(θtzs) =

{
0, xs = 0,
ξt, otherwise,

with ξt = R2σ′(Rθt). We can still deduce an upper-bound in form of (5.27) by
ignoring terms with xs = 0, hence Regretn 6 e · logn+B2R2 +O(1) with λ = R2.

5.6 AOSMP: Approximated One-Step Minmax Predic-
tor

In this section, we study a variant of the minmax approach presented in the previous
Section: instead of doing minmax on the exact cumulative loss function, we propose
to do minmax on an approximation of the cumulative loss function. We rely on the
following quadratic approximation of the logistic function as in Jézéquel et al. [2020].
Lemma 5.12 (Lemma 5 of Jézéquel et al. [2020] restated). Given ‖xt‖ 6 R for all
time t. For the logistic loss function induced by (xt, yt) the features and the label of
time t, `t(θ) = − log σ(ytθ>xt), consider the quadratic surrogate of `t(θ), developed
around any θ̃t ∈ Rd, defined as

˜̀
t(θ) := `t(θ̃t) + g>t (θ − θ̃t) + 1

2ηt
(
x>t (θ − θ̃t)

)2
(5.28)
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with
gt := ∇`t(θ̃t) = −ytσ(〈θ̃t, xt〉)xt, ηt := σ′t

1 +BR
:= σ′(〈θ̃t, xt〉)

1 +BR

Then, for any θ ∈ B(Rd, B),
˜̀
t(θ) 6 `t(θ).

Interested readers can refer to [Jézéquel et al., 2020] for the proof of this Lemma,
which relies on an exact study of the logistic function. The quadratic lower-
bound (5.28) is better than the one from exp-concavity, as the curvature parameter
ηt depends adaptively on the scalar product between the features xt and the point
θ̃t from which we do the development.

5.6.1 Algorithm

Now we present the approximated version of OSMP. We directly write the Approx-
imated One-Step Minmax Predictor (AOSMP) with the search space ∆ = Rd.
Definition 5.13 (AOSMP). Given λ > 0 the ridge penalization parameter, the
AOSMP computes the following estimator

ŷt = argmin
ŷ∈R

sup
yt∈{−1,+1}

sup
θ∈Rd

{
L̂t−1 + `(ŷ, yt)−

(
L̃t−1(θ) + `(θ>xt, yt) + λ ‖θ‖2

)}
(5.29)

with L̂t−1 := ∑t−1
s=1 `(ŷs, ys) the actual sum of losses suffered by successively pro-

posed predictions (ŷs) until time t − 1, and L̃t−1 the function taking parameter θ,
corresponding to the sum of the approximated losses until time t − 1 suffered by
a fixed parameter θ, i.e. L̃t−1(θ) := ∑t−1

s=1
˜̀
s(θ) where ˜̀

s are successive quadratic
approximation functions defined in Equation (5.28) with the choice of θ̃s specified
below (Equation (5.30)).

AOSMP (5.29) is very much similar to the “exact” one defined in (5.8): both are
minmax, taking the best against the worst possible scenario in terms of real label yt
and the adversary parameter θ. The difference is that in (5.29), in the evaluation of
the adversary parameter θ, we replace the actual cumulative loss function until the
previous time Lt−1 by the cumulative surrogate quadratic form L̃t−1. Replacing the
true loss function by its quadratic surrogate is a common practice in the literature of
online logistic regression [Hazan et al., 2007; Jézéquel et al., 2020], as the quadratic
functions are easier to compute, and at the same time the quadratic forms usually
allow telescopic sum in the computations in the regret analysis, as we will see later
in this section.

Notations and the choice of θ̃t

We introduce the notations

L̃λ,t(θ) := L̃t(θ) + λ ‖θ‖2 , L̃?λ,t := inf
θ∈Rd

{
L̃t(θ) + λ ‖θ‖2

}
and for y ∈ {−1,+1}, the functions

L̃yλ,t(θ) := `(θ>xt, y) + L̃λ,t−1(θ)

and their infimum

L̃y?λ,t := inf
θ∈Rd

{
`(θ>xt, y) + L̃λ,t−1(θ)

}
for y ∈ {−1,+1}.
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Denote for y ∈ {−1,+1},

θ̃
(xt,y)
t := argmin

θ∈Rd
L̃yλ,t(θ) with L̃yλ,t(θ) := `(θ>xt, y) + L̃λ,t−1(θ).

We remark that θ̃(xt,y)
t exists and is unique as the minimizer of a strongly convex

function L̃yt . In particular, we choose

θ̃t := θ̃
(xt,yt)
t (5.30)

such that θ̃t is the point around which we do the quadratic development for ˜̀
t in

Equation (5.28). Making such choice is possible after the true label yt is revealed.

Alternative expression and explicit algorithm

Similarly to OSMP, we have an explicit expression for AOSMP. We skip the proof
of this Lemma as it is very much similar to the one of Lemma 5.4, relying on the
properties of the log-loss.
Lemma 5.14. AOSMP defined in Equation (5.29) is equivalent to

ŷt = −L̃+1?
λ,t + L̃−1?

λ,t (5.31)

Remark 5.15. AOSMP predicts the probabilities p(+1 | xt) = p̂t and p(−1 | xt) =
1− p̂t with

p̂t =
exp(−L̃+1?

λ,t )
exp(−L̃+1?

λ,t ) + exp(−L̃−1?
λ,t )

(5.32)

Let us summarize AOSMP in Algorithm 6.

Algorithm 6 AOSMP description: computation of ŷt.
1: Inputs: Parameters λ > 0, n, d > 1, constants B,R > 0
2: Initialize: Function L̃λ,0(θ) = λ ‖θ‖2
3: for t = 1, . . . , n do
4: Receive xt
5: Compute L̃y?t ← infθ∈Rd

{
`(θ>xt, y) + L̃λ,t−1(θ)

}
for y = −1 and y = +1

6: Predict ŷt ← −L̃+1?
t + L̃−1?

t

7: Receive yt
8: Compute θ̃t ← argminθ∈Rd

{
`(θ>xt, yt) + L̃λ,t−1(θ)

}
, and function ˜̀

t(θ) as
specified in Equation (5.28)

9: Update function L̃λ(θ) = L̃λ,t−1(θ) + ˜̀
t(θ)

10: end for

5.6.2 Pseudo instant regret and regret upper-bound

Now we move to the regret analysis of the AOSMP. As before, we introduce pseudo
instant regret as the component term in the sum over time steps.
Definition 5.16 (Pseudo instant regret). We call “pseudo instant regret” at time
t the quantity defined by

r̂t := `(ŷt, yt)− L̃?λ,t + L̃?λ,t−1. (5.33)
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Lemma 5.17. An alternative expression for the pseudo instant regret writes

r̂t = log
(
exp(−L̃+1?

λ,t + L̃?λ,t−1) + exp(−L̃−1?
λ,t + L̃?λ,t−1)

)
. (5.34)

Proof. We plug the expression of ŷt (Equation (5.31)) into the definition of r̂t (Equa-
tion (5.33)) to obtain

r̂t = log
(
1 + exp

(
−yt(−L̃+1?

λ,t + L̃−1
λ,t)
))
− L̃λ,t + L̃λ,t−1

= log
(
1 + exp

(
L̃yt?λ,t − L̃

−yt?
λ,t

))
− L̃?λ,t + L̃?λ,t−1.

Furthermore, we notice that `t(θ̃t) = ˜̀
t(θ̃t) by the definition of ˜̀

t, then

L̃yt?λ,t = `(θ̃>t xt, yt) + L̃λ,t−1(θ̃t) = L̃λ,t(θ̃t),

and since 0 = ∇`t(θ̃t) +∇L̃λ,t−1(θ̃t) = ∇L̃λ,t(θ̃t), we therefore have

θ̃t = argmin
θ∈Rd

L̃λ,t(θ) and L̃yt?λ,t = `t(θ̃t) + L̃λ,t−1(θ̃t) = L̃?λ,t.

Thus, we obtain the statement in Lemma.
The following Lemma provides an upper-bound for the sum of the pseudo instant

regrets r̂t.
Lemma 5.18. Assume λ > R2, then the sum of pseudo instant regrets is upper-
bounded, namely

n∑
t=1

r̂t 6 e · (1 +BR) log det(An/2λ)

with At ∈ Rd×d defined by

At := ∇2L̃λ,t(θ̃t) = 1
1 +BR

t∑
s=1

σ′sxsx
>
s + 2λId.

Proof. We start from rewriting Equation (5.34), while denoting zt = −ytxt and
θ̃−ytt = θ̃

(xt,−yt)
t ,

r̂t = log
(
σ(yt〈θ̃ytt , xt〉) exp(−L̃λ,t−1(θ̃ytt ) + L̃?λ,t−1)

+ σ(−yt〈θ̃−ytt , xt〉) exp(−L̃λ,t−1(θ̃−ytt ) + L̃?λ,t−1)
)

6 log
(
σ(−〈θ̃t, zt〉) + σ(〈θ̃−ytt , zt〉)

)
6σ(〈θ̃−ytt , zt〉)− σ(〈θ̃t, zt〉) (5.35)

where we use L̃λ,t−1(θ̃ytt ) > L̃?t−1 and L̃λ,t−1(θ̃−ytt ) > L̃?t−1 on the second line,
σ(−u) = 1 − σ(u) and log(1 + u) 6 u on the third line. Then, using similar
arguments (namely the generalized R-self-concordance of the function L̃ytλ,t under
Assumption 5.1, then λ > R2, followed by a study of the function σ) as in the proof
of Proposition 5.9, we obtain

σ(〈θ̃−ytt , zt〉)− σ(〈θ̃t, zt〉) 6 e · σ′(〈θ̃t, xt〉) ·
〈

(∇2L̃ytλ,t(θ̃t))
−1xt, xt

〉
. (5.36)

The Hessian ∇2L̃ytλ,t evaluated at θ̃t writes

∇2L̃ytλ,t(θ̃t) = σ′(〈θ̃t, xt〉)xtx>t +
t−1∑
s=1

1
1 +BR

σ′(〈θ̃s, xs〉)xsx>s + 2λId,
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hence, with the definition of At in the statement of the Lemma,

∇2L̃ytλ,t(θ̃t) = (1 +BR)(At −At−1) +At−1 < At. (5.37)

Recall that At−1 = At − σ′t
1+BRxtx

>
t , then from Cesa-Bianchi and Lugosi [2006,

Lemma 11.11],
σ′t

〈
A−1
t xt, xt

〉
= (1 +BR)

(
1− detAt−1

detAt

)
. (5.38)

Putting together Equations (5.35), (5.36), (5.37) and (5.38) implies

r̂t 6 e · (1 +BR)
(

1− detAt−1
detAt

)
6 e · (1 +BR) log detAt

detAt−1
.

By summing for t from 1 to n, using L̃0(θ) = 0, A0 = 2λId, and the telescopic sum,
we have

n∑
t=1

r̂t 6 e · (1 +BR) log det(An/2λ).

Now we are ready to state the Theorem on the regret upper-bound of AOSMP.
Theorem 5.19. Let λ,R,B > 0 and d, n > 1. Let (x1, y1), . . . , (xn, yn) ∈ X × Y
be an arbitrary sequence of observations. Under Assumptions 5.1 and 5.2, we run
AOSMP (Algorithm 6) with λ > R2. Then, its regret satisfies the following upper-
bound, against any θ ∈ B(Rd, B),

Regretn(θ) 6 e · (1 +BR)d log
(

1 + nR2

8d(1 +BR)λ

)
+ λ ‖θ‖2 .

In particular, by choosing λ = R2, it yields

Regretn 6 e · (1 +BR)d log
(

1 + n

8d(1 +BR)

)
+B2R2.

Proof. Recall that for the sequence (xt, yt)t and the predictions (ŷt)t, the regret
against θ ∈ B(Rd, B) until the round n writes

Regretn(θ) =
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(θ>xt, yt).

We upper-bound each `t(θ) by ˜̀(θ), using Lemma 5.12, to obtain

Regretn(θ) 6
n∑
t=1

`(ŷt, yt)−
n∑
t=1

˜̀
t(θ) =

n∑
t=1

`(ŷt, yt)− L̃n(θ),

that we bring into a sum of the pseudo instant regrets

Regretn(θ) 6
n∑
t=1

`(ŷt, yt)− inf
θ′∈Rd

{
L̃n(θ′) + λ

∥∥θ′∥∥2
}

+ λ ‖θ‖2

=
n∑
t=1

(
`(ŷt, yt)− L̃?λ,t + L̃?λ,t−1

)
+ λ ‖θ‖2 .

Then, applying Lemma 5.18 as we assume λ > R2 to upper-bound the sum of pseudo
instant regrets term, and using the notations of the same Lemma, we obtain

Regretn(θ) 6 e · (1 +BR) log det(An/2λ) + λ ‖θ‖2 .
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To upper-bound the RHS, we recall that An = 1
1+BR

∑n
t=1 σ

′
txtx

>
t + 2λId with

0 < σ′t 6 1/4. Denote Cn = ∑n
t=1 σ

′
txtx

>
t , then

log det(An/2λ) =
d∑

k=1
log

(
1 + λk(Cn)

2(1 +BR)λ

)

where λk(Cn) is the k-th largest eigenvalue of Cn. We remark that λk(Cn) > 0
for all k, and ∑d

k=1 λk(Cn) = Tr(Cn) 6 nR2/4. Then the RHS is maximized
under the constraint ∑λk(Cn) 6 nR2/4 when all the eigenvalues are equal, i.e.
λk(Cn) = nR2/(4d) for all k. That leads to

log det (An/2λ) 6 d log
(

1 + nR2

8d(1 +BR)λ

)
.

To wrap up, for any θ ∈ B(Rd, B), under the condition λ > R2, we have

Regretn(θ) 6 e · (1 +BR)d log
(

1 + nR2

8d(1 +BR)λ

)
+ λ ‖θ‖2 ,

which means that with the choice λ = R2, we have

Regretn 6 e · (1 +BR)d log
(

1 + n

8d(1 +BR)

)
+B2R2.

We obtain for AOSMP, a regret upper-bound in O(dBR log(n) +B2R2), which
is logarithmic in the number of total rounds n, with a multiplicative constant of
order dBR, and an additional term B2R2. Considering Remark 5.1, B2R2 � d, the
regret upper-bound is in O(d

√
d log(n)). Finally, we remark that the upper-bound

of AOSMP is of the same order as the one of AIOLI [Jézéquel et al., 2020], since
we use the same quadratic approximation (Lemma 5.12).

5.7 Discussion and perspective

In this work, for online logistic regression, we investigated two new candidate algo-
rithms inspired by SMP [Mourtada and Gaïffas, 2019].

• For OSMP, we found an upper-bound for instant regret r̂t 6 e · σ′(〈θt, xt〉) ·
‖xt‖2(∇2Lλ,t(θt))−1 . Despite our initial thoughts, we were facing some technical
difficulties and were not able to obtain a regret upper-bound at the same level
with best known algorithm.

• For AOSMP which uses a quadratic surrogate of the logistic function, we proved
a regret upper-bound which is similar to the one of Jézéquel et al. [2020], state-
of-the-art for binary online logistic regression to the best of our knowledge.

The question for better regret with an efficient algorithm for online logistic
regression remains open. Also, we believe that the generalization of OSMP and
AOSMP in the case of multi-class logistic regression is certainly possible.

147



CHAPTER 5. ONLINE LOGISTIC REGRESSION

Bibliography
N. Agarwal, S. Kale, and J. Zimmert. Efficient methods for online multiclass logistic
regression. arXiv preprint arXiv:2110.03020, 2021. 127, 131, 132

K. S. Azoury and M. K. Warmuth. Relative loss bounds for on-line density esti-
mation with the exponential family of distributions. Machine Learning, 43(3):
211–246, 2001. 131

F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of
Statistics, 4(none):384 – 414, 2010. doi: 10.1214/09-EJS521. URL https://
doi.org/10.1214/09-EJS521. 126, 127

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge uni-
versity press, 2006. 124, 139, 140, 146

D. J. Foster, S. Kale, H. Luo, M. Mohri, and K. Sridharan. Logistic regression:
The importance of being improper. In S. Bubeck, V. Perchet, and P. Rigollet,
editors, Proceedings of the 31st Conference On Learning Theory, volume 75 of
Proceedings of Machine Learning Research, pages 167–208. PMLR, 06–09 Jul
2018. URL http://proceedings.mlr.press/v75/foster18a.html. 127, 130,
132

E. Hazan. Introduction to online convex optimization. arXiv preprint
arXiv:1909.05207, 2019. 124, 129

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007. 126, 128, 129, 132, 139,
143

E. Hazan, T. Koren, and K. Y. Levy. Logistic regression: Tight bounds for stochas-
tic and online optimization. In Conference on Learning Theory, pages 197–209.
PMLR, 2014. 129

P. Jacquet, G. Shamir, and W. Szpankowski. Precise minimax regret for logis-
tic regression with categorical feature values. In V. Feldman, K. Ligett, and
S. Sabato, editors, Proceedings of the 32nd International Conference on Algorith-
mic Learning Theory, volume 132 of Proceedings of Machine Learning Research,
pages 755–771. PMLR, 16–19 Mar 2021. URL http://proceedings.mlr.press/
v132/jacquet21a.html. 130

R. Jézéquel, P. Gaillard, and A. Rudi. Efficient improper learning for online logistic
regression. In Conference on Learning Theory, pages 2085–2108. PMLR, 2020.
127, 131, 132, 142, 143, 147

R. Jézéquel, P. Gaillard, and A. Rudi. Mixability made efficient: Fast online
multiclass logistic regression. working paper or preprint, Oct. 2021. URL
https://hal.archives-ouvertes.fr/hal-03370530. 127, 131, 132

S. M. Kakade and A. Ng. Online bounds for bayesian algorithms. In L. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing
Systems, volume 17. MIT Press, 2005. URL https://proceedings.neurips.cc/
paper/2004/file/c60d870eaad6a3946ab3e8734466e532-Paper.pdf. 126, 129,
130

148

https://doi.org/10.1214/09-EJS521
https://doi.org/10.1214/09-EJS521
http://proceedings.mlr.press/v75/foster18a.html
http://proceedings.mlr.press/v132/jacquet21a.html
http://proceedings.mlr.press/v132/jacquet21a.html
https://hal.archives-ouvertes.fr/hal-03370530
https://proceedings.neurips.cc/paper/2004/file/c60d870eaad6a3946ab3e8734466e532-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/c60d870eaad6a3946ab3e8734466e532-Paper.pdf


CHAPTER 5. ONLINE LOGISTIC REGRESSION

H. B. McMahan and M. Streeter. Open problem: Better bounds for online logistic
regression. In COLT/ICML Joint Open Problem Session, JMLR: Workshop and
Conference Proceedings, 2012. 128

J. Mourtada and S. Gaïffas. An improper estimator with optimal excess risk
in misspecified density estimation and logistic regression. arXiv preprint
arXiv:1912.10784, 2019. 125, 127, 131, 132, 135, 136, 137, 138, 141, 147

Y. Nesterov. Introductory lectures on convex optimization: A basic course, vol-
ume 87. Springer Science & Business Media, 2003. 126

F. Orabona. A modern introduction to online learning. arXiv preprint
arXiv:1912.13213, 2019. 124

G. I. Shamir. Logistic regression regret: What’s the catch? In J. D. Abernethy
and S. Agarwal, editors, Conference on Learning Theory, COLT 2020, 9-12 July
2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Machine Learn-
ing Research, pages 3296–3319. PMLR, 2020. URL http://proceedings.mlr.
press/v125/shamir20a.html. 130

V. Vovk. Competitive on-line statistics. International Statistical Review / Revue
Internationale de Statistique, 69(2):213–248, 2001. ISSN 03067734, 17515823.
URL http://www.jstor.org/stable/1403814. 131

V. G. Vovk. Aggregating strategies. In Proceedings of the third annual workshop
on Computational learning theory, pages 371–386, 1990. 130

M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th international conference on machine learning
(icml-03), pages 928–936, 2003. 126, 128, 132

149

http://proceedings.mlr.press/v125/shamir20a.html
http://proceedings.mlr.press/v125/shamir20a.html
http://www.jstor.org/stable/1403814


CHAPTER 5. ONLINE LOGISTIC REGRESSION

150


	Contents
	Résumé détaillé
	Introduction
	Deep Learning and applications in healthcare
	Contrastive learning, unsupervised learning and supervised learning
	From Random Forest to WildWood
	Online logistic regression: towards an efficient algorithm with better regret guarantee

	ZiMM: a deep learning model for long term and blurry relapses with non-clinical claims data
	Introduction
	Proposed architecture
	Application: prediction of post-surgical relapse of urinary problems
	Conclusion and future works

	About contrastive unsupervised representation learning for classification and its convergence
	Introduction
	Related work
	Unsupervised training improves supervised performance
	Convergence of gradient descent for contrastive unsupervised learning
	Experiments
	Conclusion
	Appendix: technical proofs

	WildWood: a new Random Forest Algorithma
	Introduction
	WildWood: a new Random Forest algorithm
	Theoretical guarantees
	Experiments
	Conclusion
	Appendix: technical proofs
	Appendix: experiments

	Online logistic regression: towards an efficient algorithm with better regret?
	Introduction
	Properties of the logistic function
	Proper algorithms
	Improper algorithms
	OSMP: One-Step Minmax Predictor
	AOSMP: Approximated One-Step Minmax Predictor
	Discussion and perspective


